-
- David Baur, Katharina Kroboth, Christoph-Eckhard Heyde, and Anna Voelker.
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.
- World Neurosurg. 2022 Oct 1; 166: 607060-70.
ObjectiveConvolutional neural networks (CNNs) are being increasingly used in the medical field, especially for image recognition in high-resolution, large-volume data sets. The study represents the current state of research on the application of CNNs in image segmentation and pathology detection in spine magnetic resonance imaging.MethodsFor this systematic literature review, the authors performed a systematic initial search of the PubMed/Medline and Web of Science (Core collection) databases for eligible investigations. The authors limited the search to observational studies. Outcome parameters were analyzed according to the inclusion criteria and assigned to 3 groups: 1) segmentation of anatomical structures, 2) segmentation and evaluation of pathologic structures, and 3) specific implementation of CNNs.ResultsTwenty-four retrospectively designed articles met the inclusion criteria. Publication dates ranged from 2017 to 2021. In total, 14,065 patients with 113,110 analyzed images were included. Most authors trained their network with a training-to-testing ratio of 80/20, while all but 2 articles used 5- to 10-fold cross-validation. Nine articles compared their performance results with other neural networks and algorithms, and all 24 articles described outcomes as positive.ConclusionsState-of-the-art CNNs can detect and segment-specific anatomical landmarks and pathologies across a wide range, comparable to the skills of radiologists and experienced clinicians. With rapidly evolving network architectures and growing medical image databases, the future is likely to show growth in the development and refinement of these capable networks. However, the aid of automated segmentation and classification by neural networks cannot and should not be expected to replace clinical experts.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.