-
Journal of neurosurgery · Mar 2023
Arousal and salience network connectivity alterations in surgical temporal lobe epilepsy.
- Hernán F J González, Saramati Narasimhan, Sarah E Goodale, Graham W Johnson, Derek J Doss, Danika L Paulo, Victoria L Morgan, Catie Chang, and Dario J Englot.
- 1Departments of Biomedical Engineering and.
- J. Neurosurg. 2023 Mar 1; 138 (3): 810820810-820.
ObjectiveIt is poorly understood why patients with mesial temporal lobe epilepsy (TLE) have cognitive deficits and brain network changes that extend beyond the temporal lobe, including altered extratemporal intrinsic connectivity networks (ICNs). However, subcortical arousal structures project broadly to the neocortex, are affected by TLE, and thus may contribute to these widespread network effects. The authors' objective was to examine functional connectivity (FC) patterns between subcortical arousal structures and neocortical ICNs, possible neurocognitive relationships, and FC changes after epilepsy surgery.MethodsThe authors obtained resting-state functional magnetic resonance imaging (fMRI) in 50 adults with TLE and 50 controls. They compared nondirected FC (correlation) and directed FC (Granger causality laterality index) within the salience network, default mode network, and central executive network, as well as between subcortical arousal structures; these 3 ICNs were also compared between patients and controls. They also used an fMRI-based vigilance index to relate alertness to arousal center FC. Finally, fMRI was repeated in 29 patients > 12 months after temporal lobe resection.ResultsNondirected FC within the salience (p = 0.042) and default mode (p = 0.0008) networks, but not the central executive network (p = 0.79), was decreased in patients in comparison with controls (t-tests, corrected). Nondirected FC between the salience network and subcortical arousal structures (nucleus basalis of Meynert, thalamic centromedian nucleus, and brainstem pedunculopontine nucleus) was reduced in patients in comparison with controls (p = 0.0028-0.015, t-tests, corrected), and some of these connectivity abnormalities were associated with lower processing speed index, verbal comprehension, and full-scale IQ. Interestingly, directed connectivity measures suggested a loss of top-down influence from the salience network to the arousal nuclei in patients. After resection, certain FC patterns between the arousal nuclei and salience network moved toward control values in the patients, suggesting that some postoperative recovery may be possible. Although an fMRI-based vigilance measure suggested that patients exhibited reduced alertness over time, FC abnormalities between the salience network and arousal structures were not influenced by the alertness levels during the scans.ConclusionsFC abnormalities between subcortical arousal structures and ICNs, such as the salience network, may be related to certain neurocognitive deficits in TLE patients. Although TLE patients demonstrated vigilance abnormalities, baseline FC perturbations between the arousal and salience networks are unlikely to be driven solely by alertness level, and some may improve after surgery. Examination of the arousal network and ICN disturbances may improve our understanding of the downstream clinical effects of TLE.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.