-
- Thomas J de Geus, Glenn Franken, and JoostenElbert A JEAJDepartment of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht,.
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands. Electronic address: t.degeus@maastrichtuniversity.nl.
- Neuromodulation. 2023 Jan 1; 26 (1): 253425-34.
ObjectivesSpinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance. The aim of this systematic review is to summarize and understand the effects of different SCS paradigms on the central inflammatory balance in the spinal cord.Materials And MethodsA systematic literature search was conducted using MEDLINE, Embase, and PubMed. All articles studying the effects of SCS on inflammatory or glial markers in neuropathic pain models were included. A quality assessment was performed on predetermined entities of bias.ResultsA total of 11 articles were eligible for this systematic review. In general, induction of neuropathic pain in rats results in a proinflammatory state and at the same time an increased activity/expression of microglial and astroglial cells in the spinal cord dorsal horn. Conventional SCS seems to further enhance this proinflammatory state and increase the messenger RNA expression of microglial markers, but it also results in a decrease in microglial protein marker levels. High-frequency and especially differential targeted multiplexed SCS can not only restore the balance between pro- and anti-inflammatory molecules but also minimize the overexpression/activation of glial cells. Quality assessment and risk of bias analysis of the studies included make it clear that the results of these preclinical studies must be interpreted with caution.ConclusionsIn summary, the preclinical findings tend to indicate that there is a distinct SCS paradigm-related effect in the modulation of the central inflammatory balance of the spinal dorsal horn.Copyright © 2022. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.