• N. Engl. J. Med. · Aug 2022

    Low-Dose Subcutaneous or Intravenous Monoclonal Antibody to Prevent Malaria.

    • Richard L Wu, Azza H Idris, Nina M Berkowitz, Myra Happe, Martin R Gaudinski, Christian Buettner, Larisa Strom, Seemal F Awan, LaSonji A Holman, Floreliz Mendoza, Ingelise J Gordon, Zonghui Hu, Andrezza Campos Chagas, Lawrence T Wang, Lais Da Silva Pereira, Joseph R Francica, Neville K Kisalu, Barbara J Flynn, Wei Shi, Wing-Pui Kong, Sarah O'Connell, Sarah H Plummer, Allison Beck, Adrian McDermott, Sandeep R Narpala, Leonid Serebryannyy, Mike Castro, Rosa Silva, Marjaan Imam, Iris Pittman, Somia P Hickman, Andrew J McDougal, Ashly E Lukoskie, Jittawadee R Murphy, Jason G Gall, Kevin Carlton, Patricia Morgan, Ellie Seo, Judy A Stein, Sandra Vazquez, Shinyi Telscher, Edmund V Capparelli, Emily E Coates, John R Mascola, Julie E Ledgerwood, Lesia K Dropulic, Robert A Seder, and VRC 614 Study Team.
    • From the Vaccine Research Center (R.L.W., A.H.I., N.M.B., M.H., M.R.G., C.B., L. Strom, S.F.A., L.A.H., F.M., I.J.G., L.T.W., L.D.S.P., J.R.F., N.K.K., B.J.F., W.S., W.-P.K., S.O., S.H.P., A.B., A.M., S.R.N., L. Serebryannyy, M.C., R.S., M.I., I.P., S.P.H., A.J.M., A.E.L., J.G.G., K.C., P.M., E.S., J.A.S., S.V., S.T., E.E.C., J.R. Mascola, J.E.L., L.K.D., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (R.L.W., M.R.G.), and the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., J.R. Murphy) - all in Maryland; the Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA (A.H.I.); and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.).
    • N. Engl. J. Med. 2022 Aug 4; 387 (5): 397407397-407.

    BackgroundNew approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed.MethodsWe conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain).ResultsNo safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 μg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 μg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 μg per milliliter.ConclusionsIn this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).Copyright © 2022 Massachusetts Medical Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.