• Cochrane Db Syst Rev · Aug 2022

    Review

    Laser trabeculoplasty for open-angle glaucoma and ocular hypertension.

    • Christiane R Rolim-de-Moura, Augusto Paranhos, Mohamed Loutfi, David Burton, Richard Wormald, and Jennifer R Evans.
    • Worker's Health Department, Universidade Federal de São Paulo, São Paulo, Brazil.
    • Cochrane Db Syst Rev. 2022 Aug 9; 8 (8): CD003919CD003919.

    BackgroundOpen-angle glaucoma (OAG) is an important cause of blindness worldwide. Laser trabeculoplasty, a treatment modality, still does not have a clear position in the treatment sequence.ObjectivesTo assess the effects of laser trabeculoplasty for treating OAG and ocular hypertension (OHT) when compared to medication, glaucoma surgery or no intervention. We also wished to compare the effectiveness of different laser trabeculoplasty technologies for treating OAG and OHT.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2021, Issue 10); Ovid MEDLINE; Ovid Embase; the ISRCTN registry; LILACS, ClinicalTrials.gov and the WHO ICTRP. The date of the search was 28 October 2021. We also contacted researchers in the field.Selection CriteriaWe included randomised controlled trials (RCTs) comparing laser trabeculoplasty with no intervention, with medical treatment, or with surgery in people with OAG or OHT. We also included trials comparing different types of laser trabeculoplasty technologies.Data Collection And AnalysisWe used standard methods expected by Cochrane. Two authors screened search results and extracted data independently. We considered the following outcomes at 24 months: failure to control intraocular pressure (IOP), failure to stabilise visual field progression, failure to stabilise optic neuropathy progression, adverse effects, quality of life, and costs. We graded the 'certainty' of the evidence using GRADE.Main ResultsWe included 40 studies (5613 eyes of 4028 people) in this review. The majority of the studies were conducted in Europe and in the USA. Most of the studies were at risk of performance and/or detection bias as they were unmasked. None of the studies were judged as having low risk of bias for all domains. We did not identify any studies of laser trabeculoplasty alone versus no intervention. Laser trabeculoplasty versus medication Fourteen studies compared laser trabeculoplasty with medication in either people with primary OAG (7 studies) or primary or secondary OAG (7 studies); five of the 14 studies also included participants with OHT. Six studies used argon laser trabeculoplasty and eight studies used selective laser trabeculoplasty. There was considerable clinical and methodological diversity in these studies leading to statistical heterogeneity in results for the primary outcome "failure to control IOP" at 24 months.  Risk ratios (RRs) ranged from 0.43 in favour of laser trabeculoplasty to 1.87 in favour of medication (5 studies, I2 = 89%). Studies of argon laser compared with medication were more likely to show a beneficial effect compared with studies of selective laser (test for interaction P = 0.0001) but the argon laser studies were older and the medication comparator group in those studies may have been less effective. We considered this to be low-certainty evidence because the trials were at risk of bias (they were not masked) and there was unexplained heterogeneity. There was evidence from two studies (624 eyes) that argon laser treatment was associated with less failure to stabilise visual field progression compared with medication (7% versus 11%, RR 0.70, 95% CI 0.42 to 1.16) at 24 months and one further large recent study of selective laser also reported a reduced risk of failure at 48 months (17% versus 26%) RR 0.65, 95% CI 0.52 to 0.81, 1178 eyes). We judged this outcome as moderate-certainty evidence, downgrading for risk of bias. There was only very low-certainty evidence on optic neuropathy progression. Adverse effects were more commonly seen in the laser trabeculoplasty group including peripheral anterior synechiae (PAS) associated with argon laser (32% versus 26%, RR 11.74, 95% CI 5.94 to 23.22; 624 eyes; 2 RCTs; low-certainty evidence); 5% of participants treated with laser in three studies of selective laser group had early IOP spikes (moderate-certainty evidence). One UK-based study provided moderate-certainty evidence that laser trabeculoplasty was more cost-effective.  Laser trabeculoplasty versus trabeculectomy Three studies compared laser trabeculoplasty with trabeculectomy. All three studies enrolled participants with OAG (primary or secondary) and used argon laser. People receiving laser trabeculoplasty may have a higher risk of uncontrolled IOP at 24 months compared with people receiving trabeculectomy (16% versus 8%, RR 2.12, 95% CI 1.44 to 3.11; 901 eyes; 2 RCTs). We judged this to be low-certainty evidence because of risk of bias (trials were not masked) and there was inconsistency between the two trials (I2 = 68%). There was limited evidence on visual field progression suggesting a higher risk of failure with laser trabeculoplasty. There was no information on optic neuropathy progression, quality of life or costs. PAS formation and IOP spikes were not reported but in one study trabeculectomy was associated with an increased risk of cataract (RR 1.78, 95% CI 1.46 to 2.16) (very low-certainty evidence).Authors' ConclusionsLaser trabeculoplasty may work better than topical medication in slowing down the progression of open-angle glaucoma (rate of visual field loss) and may be similar to modern eye drops in controlling eye pressure at a lower cost. It is not associated with serious unwanted effects, particularly for the newer types of trabeculoplasty, such as selective laser trabeculoplasty.Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.