• J Headache Pain · Aug 2022

    HMGB1 in the mPFC governs comorbid anxiety in neuropathic pain.

    • Yu Du, Ceng-Lin Xu, Jie Yu, Keyue Liu, Shi-Da Lin, Ting-Ting Hu, Feng-Hui Qu, Fang Guo, Guo-Dong Lou, Masahiro Nishibori, Wei-Wei Hu, Zhong Chen, and Shi-Hong Zhang.
    • Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
    • J Headache Pain. 2022 Aug 16; 23 (1): 102.

    BackgroundWhether neuroinflammation causes comorbid mood disorders in neuropathic pain remains elusive. Here we investigated the role of high mobility group box 1 protein (HMGB1), a proinflammatory cytokine, in the medial prefrontal cortex (mPFC) in anxiety comorbidity of neuropathic pain.MethodsNeuropathic pain was induced by partial transection of the infraorbital nerve (p-IONX) or partial sciatic nerve ligation (PSL) in mice and evaluated by measuring nociceptive thresholds to mechanical and heat stimulation. Anxiety-like behaviors were assessed by elevated plus maze, light dark box and open field tests. Aversive or anti-aversive effect was detected by conditioned place preference test. Neuronal activity was evaluated by single-unit and patch clamp recordings. The contribution of mPFC pyramidal neurons to anxiety was further examined by selectively inhibiting them by optogenetics. HMGB1 expression was measured by immunohistochemistry and western blotting. Antagonism of HMGB1 was achieved by injecting anti-HMGB1 monoclonal antibody (mAb) intracerebrally or intraperitoneally.ResultsAnxiety-like behaviors were presented earlier after p-IONX than after PSL. HMGB1 expression was upregulated in the mPFC temporally in parallel to anxiety onset, rather than in other regions associated with anxiety. The upregulation of HMGB1 expression and its translocation from the nucleus to cytoplasm in the mPFC occurred predominantly in neurons and were accompanied with activation of microglia and astrocytes. Infusion of anti-HMGB1 mAb into the mPFC during the early and late phases after either p-IONX or PSL alleviated anxiety-like behaviors and aversion without changing pain sensitization, while local infusion of exogenous ds-HMGB1, the proinflammatory form of HMGB1, into the mPFC induced anxiety and aversion but not pain sensitization in naïve mice. In addition to reversing established pain sensitization and anxiety simultaneously, intraperitoneal injection of anti-HMGB1 mAb reduced HMGB1 upregulation and suppressed the hyperexcitability of layer 2/3 pyramidal neurons in the mPFC after p-IONX. Moreover, optogenetic inhibition of mPFC pyramidal neurons alleviated anxiety in p-IONX mice.ConclusionThese results demonstrate that HMGB1 in the mPFC drives and maintains anxiety comorbidity in neuropathic pain by increasing the excitability of layer 2/3 pyramidal neurons, and justify antagonism of HMGB1, e.g., neutralization by mAb, as a promising therapeutic strategy for neuropathic pain with anxiety comorbidity.© 2022. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.