• Shock · Jul 2022

    TRAUMA-DERIVED EXTRACELLULAR VESICLES ARE SUFFICIENT TO INDUCE ENDOTHELIAL DYSFUNCTION AND COAGULOPATHY.

    • Ahmad Zeineddin, Feng Wu, Jing-Fei Dong, Huang Huang, Lin Zou, Wei Chao, Brooke Dorman, and Rosemary A Kozar.
    • Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland.
    • Shock. 2022 Jul 1; 58 (1): 384438-44.

    AbstractAlthough a number of studies have demonstrated increased release of extracellular vesicles (EVs) and changes in their origin differentials after trauma, the biologic significance of EVs is not well understood. We hypothesized that EVs released after trauma/hemorrhagic shock (HS) contribute to endotheliopathy and coagulopathy. To test this hypothesis, adoptive transfer experiments were performed to determine whether EVs derived from severely injured patients in shock were sufficient to induce endothelial dysfunction and coagulopathy. Methods: Total EVs were enriched from plasma of severely injured trauma/HS patients or minimally injured patients by ultracentrifugation and characterized for size and numbers. Under isoflurane anesthesia, noninjured naive C57BL/6J mice were administered EVs at varying concentrations and compared with mice receiving equal volume vehicle (phosphate-buffered saline (PBS)) or to mice receiving EVs from minimally injured patients. Thirty minutes after injection, mice were sacrificed, and blood was collected for thrombin generation (thrombin-antithrombin, thrombin-antithrombin complex [TAT] assay) and syndecan-1 by enzyme-linked immunoabsorbent assay (ELISA). Lungs were harvested for examination of histopathologic injury and costained with von Willebrand factor and fibrin to identify intravascular coagulation. Bronchial alveolar lavage fluid was aspirated from lungs for protein measurement as an indicator of the endothelial permeability. Data are presented as mean ± SD, P < 0.05 was considered significant, and t test was used. Results: An initial proof-of-concept experiment was performed in naive mice receiving EVs purified from severely injured trauma/HS patients (Injury Severity Score [ISS], 34 ± 7) at different concentrations (5 × 106 to 3.1 × 109/100 μL/mouse) and compared with PBS (control) mice. Neither TAT nor syndecan-1 levels were significantly different between groups at 30 minutes after EV infusion. However, lung vascular permeability and histopathologic injury were significantly higher in the EV group, and lung tissues demonstrated intravascular fibrin deposition. Based on these data, EVs from severely injured trauma/HS patients (ISS, 32 ± 6) or EVs from minimally injured patients (ISS, 8 ± 3) were administered to naive mice at higher concentrations (1 × 109 to 1 × 1010 EV/100 μL/mouse). Compared with mice receiving EVs from minimally injured patients, plasma TAT and syndecan-1 levels were significantly higher in the trauma/HS EV group. Similarly, bronchial alveolar lavage protein and lung histopathologic injury were higher in the trauma/HS EV group, and lung tissues demonstrated enhanced intravascular fibrin deposition. Conclusion: These data demonstrate that trauma/HS results in the systemic release of EVs, which are capable of inducing endotheliopathy as demonstrated by elevated syndecan-1 and increased permeability and coagulopathy as demonstrated by increased TAT and intravascular fibrin deposition. Targeting trauma-induced EVs may represent a novel therapeutic strategy.Copyright © 2022 by the Shock Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.