• Military medicine · Nov 2023

    Review

    Physiologic Fidelity as a Domain in Assessing Mixed Reality Trauma Simulation.

    • Andrew J Evans, Christopher M Russo, Matthew A Tovar, Alan Liu, and Sean P Conley.
    • School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
    • Mil Med. 2023 Nov 3; 188 (11-12): 332233293322-3329.

    IntroductionMixed reality has been used in trauma and emergency medicine simulation for more than a decade. As mixed reality potential in trauma simulation continues to expand, so too does the need to validate it as a surrogate for real-life emergency scenarios. Validation of these simulations can occur by measuring fidelity, or the degree to which a computing system can reproduce real-world experiences. After performing a literature review, we determined that most fidelity assessments of trauma and emergency simulations focus on how the user subjectively experiences the simulation. Although subjective user assessment is an important component of determining fidelity, we pose an introductory three-part framework that may assess mixed reality trauma simulation more adequately.Materials And MethodsA literature review was conducted using Google Scholar, PubMed, and the Uniformed Services University PowerER search database. Relevant articles were assessed to identify how studies measured fidelity in trauma simulation. We then designed the three-part framework to aid researchers in assessing the fidelity of mixed reality trauma simulations.ResultsThe domains we determined to best assess mixed reality emergency simulation are as follows:1. Continue assessing fidelity via subjective user assessments. This allows the researcher to know how real the simulation looked and felt to the user based on their individual report.2. Determine whether the trauma simulation changes the medical decision-making capacity of the user. If the user's decision-making capacity changes with a stress-inducing trauma simulation versus a non-stress-inducing simulation, then the stress-inducing trauma environment would be approaching greater fidelity.3. Study the domain of our newly proposed concept: physiologic fidelity. We define physiologic fidelity as the degree to which the simulation elicits a measurable, autonomic response independent of observed emotion or perceived affect. Recreating objective autonomic arousal may be the best way to ensure a trauma simulation reaches fidelity.ConclusionWe propose a methodology to assess mixed reality trauma simulation fidelity. Once fidelity is more fully known to the researcher and the simulation user, adjustments can be made to approach reality more closely. Improved simulators may enrich the preparedness of both junior and senior learners for real-life emergencies. We believe assessing the three domains using the Wide Area Virtual Experience at the Val G. Hemming simulation center in Bethesda, MD, will validate mixed reality-trauma simulators as invaluable surrogates for real-life emergency scenarios and ultimately contribute to improved clinical outcomes for clinicians and their patients.© The Association of Military Surgeons of the United States 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.