• J Neuroimaging · Sep 2022

    Identification of association fibers using ex vivo diffusion tractography in Alexander disease brains.

    • Tadashi Shiohama, Natalie Stewart, Masahito Nangaku, Andre J W van der Kouwe, and Emi Takahashi.
    • Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
    • J Neuroimaging. 2022 Sep 1; 32 (5): 866874866-874.

    Alexander disease (AxD) is a neurodegenerative disorder caused by heterozygous Glial Fibrillary Acidic Protein mutation. The characteristic structural findings of AxD, such as leukodystrophic features, are well known, while association fibers of AxD remain uninvestigated. The aim of this study was to explore global and subcortical fibers in four brains with AxD using ex vivo diffusion tractography MethodsHigh-angular-resolution diffusion magnetic resonance imaging (HARDI) tractography and diffusion-tensor imaging (DTI) tractography were used to evaluate long and short association fibers and compared to histological findings in brain specimens obtained from four donors with AxD and two donors without neurological disorders ResultsAxD brains showed impairment of long association fibers, except for the arcuate fasciculus and cingulum bundle, and abnormal trajectories of the inferior longitudinal and fronto-occipital fasciculi on HARDI tractography and loss of multidirectionality in subcortical fibers on DTI tractography. In histological studies, AxD brains showed diffuse low density on Klüver-Barrera and neurofilament staining and sporadic Rosenthal fibers on hematoxylin and eosin staining ConclusionsThis study describes the spatial distribution of degenerations of short and long association fibers in AxD brains using combined tractography and pathological findings.© 2022 American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.