• BMC anesthesiology · Aug 2022

    Variations of pulse pressure and central venous pressure may predict fluid responsiveness in mechanically ventilated patients during lung recruitment manoeuvre: an ancillary study.

    • Olivier Desebbe, Whitney Mondor, Laurent Gergele, Darren Raphael, and Sylvain Vallier.
    • Department of Anesthesiology and Intensive Care, Ramsay Sante Sauvegarde Clinic, Lyon, France. oldesebbe@yahoo.com.
    • BMC Anesthesiol. 2022 Aug 23; 22 (1): 269.

    BackgroundMaintaining a constant driving pressure during a prolonged sigh breath lung recruitment manoeuvre (LRM) from 20 to 45 cmH20 peak inspiratory pressure in mechanically ventilated patients has been shown to be a functional test to predict fluid responsiveness (FR) when using a linear regression model of hemodynamic parameters, such as central venous pressure (CVP) and pulse pressure (PP). However, two important limitations have been raised, the use of high ventilation pressures and a regression slope calculation that is difficult to apply at bedside. This ancillary study aimed to reanalyse absolute variations of CVP (ΔCVP) and PP (ΔPP) values at lower stages of the LRM, (40, 35, and 30 cm H20 of peak inspiratory pressure) for their ability to predict fluid responsiveness.MethodsRetrospective analysis of a prospective study data set in 18 mechanically ventilated patients, in an intensive care unit. CVP, systemic arterial pressure parameters and stroke volume (SV) were recorded during prolonged LRM followed by a 500 mL crystalloid volume expansion. Patients were considered as fluid responders if SV increased more than 10%. Receiver-operating curves (ROC) analysis with the corresponding grey zone approach were performed.ResultsAreas under the ROC to predict fluid responsiveness for ΔCVP and ΔPP were not different between the successive stepwise increase of inspiratory pressures [0.88 and 0.89 for ΔCVP at 45 and 30 cm H20 (P = 0.89), respectively, and 0.92 and 0.95 for ΔPP at 45 and 30 cm H20, respectively (P = 0.51)]. Using a maximum of 30 cmH2O inspiratory pressure during the LRM, ΔCVP and ΔPP had a threshold value to predict fluid responsiveness of 2 mmHg and 4 mmHg, with sensitivities of 89% and 89% and specificities of 67% and 89%, respectively. Combining ΔPP and ΔCVP decreased the proportion of the patients in the grey zone from 28 to 11% and showed a sensitivity of 88% and a specificity of 83%.ConclusionsA stepwise PEEP elevation recruitment manoeuvre of up to 30 cm H20 may predict fluid responsiveness as well as 45 cm H20. The combination of ΔPP and ΔCVP optimizes the categorization of responder and non-responder patients.© 2022. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.