• Eur J Pain · Nov 2022

    Anti- and Pro-Nociceptive Mechanisms in Neuropathic Pain after Human Spinal Cord Injury.

    • Robin Lütolf, Iara De Schoenmacker, Jan Rosner, Laura Sirucek, Petra Schweinhardt, Armin Curt, and Michèle Hubli.
    • Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
    • Eur J Pain. 2022 Nov 1; 26 (10): 217621872176-2187.

    BackgroundDeficient endogenous pain modulation and increased nociceptive excitability are key features of central sensitization and can be assessed in humans by conditioned pain modulation (CPM, anti-nociceptive) and temporal summation of pain (TSP, pro-nociceptive), respectively. This study aimed to investigate these measures as proxies for central sensitization in subjects with chronic neuropathic pain (NP) after spinal cord injury (SCI).MethodsIn paraplegic subjects with NP (SCI-NP; n = 17) and healthy controls (HC; n = 17), parallel and sequential sham-controlled CPM paradigms were performed using pressure pain threshold at the hand, that is, above lesion level, as test stimulus. The conditioning stimulus was a noxious cold (verum) or lukewarm water bath (sham) applied contralaterally. Regarding pro-nociceptive mechanisms, a TSP protocol with individually-adjusted pressure pain stimuli at the thenar eminence was used. CPM and TSP magnitudes were related to intensity and spatial extent of spontaneous NP.ResultsNeither the parallel nor sequential sham-controlled CPM paradigm showed any significant inhibition of above-level pressure pain thresholds for SCI-NP or HC. Accordingly, no group difference in CPM capacity was found, however, subjects with more intense spontaneous NP showed lower inhibitory CPM capacity. TSP was observed for both groups but was not enhanced in SCI-NP.ConclusionsOur results do not support altered above-level anti- or pro-nociceptive mechanisms in SCI-NP compared with HC; however, they also highlight the relevance of spontaneous NP intensity with regards to the capacity of endogenous pain modulation in SCI subjects.SignificanceCentral sensitization encompasses deficient endogenous pain modulation and increased nociceptive excitability. These two mechanisms can be assessed in humans by conditioned pain modulation and temporal summation of pain, respectively. Our data demonstrates a lack of descending pain inhibition only in subjects with severe neuropathic pain which may hint towards central sensitization at spinal and/or supra-spinal levels. Disentangling the mechanisms of endogenous pain modulation and neuronal hyperexcitability might improve mechanism-based treatment of neuropathic pain in subjects with spinal cord injury.© 2022 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC ®.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.