• Eur J Pain · Nov 2022

    Continuum of sensory profiles in diabetes mellitus patients with and without neuropathy and pain.

    • Jana Raputova, Aneta Rajdova, Jan Vollert, Iva Srotova, Cora Rebhorn, Nurcan Üçeyler, Frank Birklein, Claudia Sommer, Eva Vlckova, and Josef Bednarik.
    • Department of Neurology, Centre for Neuromuscular Diseases (Associated National Centre in the European Reference Network ERN EURO-NMD), University Hospital Brno, Brno, Czech Republic.
    • Eur J Pain. 2022 Nov 1; 26 (10): 219822122198-2212.

    BackgroundQuantitative sensory testing (QST) assesses the functional integrity of small and large nerve fibre afferents and central somatosensory pathways; QST was assumed to provide insight into the mechanisms of neuropathy. We analysed QST profiles and phenotypes in patients with diabetes mellitus to study whether these could differentiate patients with and without pain and neuropathy.MethodsA standardized QST protocol was performed and 'loss and gain of function' abnormalities were analysed in four groups of subjects: diabetic patients with painful (pDSPN; n = 220) and non-painful distal symmetric polyneuropathy (nDSPN; n = 219), diabetic patients without neuropathy (DM; n = 23) and healthy non-diabetic subjects (n = 37). Based on the QST findings, diabetic subjects were further stratified into four predefined prototypic phenotypes: sensory loss (SL), thermal hyperalgesia (TH), mechanical hyperalgesia (MH) and healthy individuals.ResultsPatients in the pDSPN group showed the greatest hyposensitivity ('loss of function'), and DM patients showed the lowest, with statistically significant increases in thermal, thermal pain, mechanical and mechanical pain sensory thresholds. Accordingly, the frequency of the SL phenotype was significantly higher in the pDSPN subgroup (41.8%), than expected (p < 0.0042). The proportion of 'gain of function' abnormalities was low in both pDSPN and nDSPN patients without significant differences.ConclusionsThere is a continuum in the sensory profiles of diabetic patients, with a more pronounced sensory loss in pDSPN group probably reflecting somatosensory nerve fibre degeneration. An analysis of 'gain of function' abnormalities (allodynia, hyperalgesia) did not offer a key to understanding the pathophysiology of spontaneous diabetic peripheral neuropathic pain.SignificanceThis article, using quantitative sensory testing profiles in large cohorts of diabetic patients with and without polyneuropathy and pain, presents a continuum in the sensory profiles of diabetic patients, with more pronounced 'loss of function' abnormalities in painful polyneuropathy patients. Painful diabetic polyneuropathy probably represents a 'more progressed' type of neuropathy with more pronounced somatosensory nerve fibre degeneration. The proportion of 'gain of function' sensory abnormalities was low, and these offer limited understanding of pathophysiological mechanisms of spontaneous neuropathic pain.© 2022 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC ®.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.