• Acta Neurochir. Suppl. · Jan 2005

    Controlled Clinical Trial

    Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) study.

    • M T O'Connell, A Seal, J Nortje, P G Al-Rawi, J P Coles, T D Fryer, D K Menon, J D Pickard, and P J Hutchinson.
    • Department of Anaesthesia, University of Cambridge, Cambridge CB2 2QQ, UK. mt209@cam.ac.uk
    • Acta Neurochir. Suppl. 2005 Jan 1;95:165-8.

    AbstractFollowing traumatic brain injury, as a consequence of ionic disturbances and neurochemical cascades, glucose metabolism is affected. [18F]-2-Fluoro-2-deoxy-D-glucose (FDG) Positron Emission Tomography (FDG-PET) provides a measure of global and regional cerebral metabolic rate of glucose (rCMRglc), but only during the time of the scan. Microdialysis monitors energy metabolites over extended time periods, but only in a small focal volume of the brain. Our objective in this study is to assess the association of parameters derived from these techniques when applied to patients with traumatic brain injury. Eleven sedated, ventilated patients receiving intracranial pressure monitoring and managed using Addenbrooke's Neurosciences Critical Care Unit protocols were monitored. Dialysate values for glucose, lactate, pyruvate, and glutamate, and the lactate to glucose (L/G), lactate to pyruvate (L/P) and pyruvate to glucose (P/G) ratios were determined and correlated with rCMRglc. FDG-PET scans were performed within 24 hours (five patients), or between 1 and 4 days (two patients) or after 4 days (six patients). Two patients were rescanned 4 and 7 days after their initial scan. A 20 mm region of interest (ROI) was defined on co-registered CT scan on two contiguous slices around the microdialysis catheter. Mean (+/-sd) for rCMRglc was 19.1 +/- 5.5 micromol/100 g/min, and the corresponding microdialysis values were: glucose 1.4 +/- 1.4 mmol/ L; lactate 5.3 +/- 3.6 mmol/L; pyruvate 164.1 +/- 142.3 micromol/L; glutamate 15.0 +/- 14.7 micromol/L; L/G 11.0 +/- 16.0; L/P 27.3 +/- 7.9 and P/G 381 +/- 660. There were significant relations between rCMRglc and dialysate lactate (r = 0.58, P = 0.04); pyruvate (r = 0.57, P = 0.04), L/G (r = 0.55, P = 0.05), and the P/G (r = 0.56, P = 0.05) but not between rCMRglc and dialysate glucose, L/P or glutamate in this data set. The results suggest that increases in glucose utilization as assessed by FDG-PET in these patients albeit in mainly healthy tissue are associated with increases in dialysate lactate, pyruvate, L/G and the P/G ratio perhaps indicating a general rise in metabolism rather than a shift towards non-oxidative metabolism. Further observations are required with regions of interest (microdialysis catheters positioned) adjacent to mass lesions notably contusions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.