• Injury · Nov 2022

    Morphological changes in glial cells arrangement under mechanical loading: A quantitative study.

    • Faezeh Eskandari, Mehdi Shafieian, Mohammad M Aghdam, and Kaveh Laksari.
    • Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
    • Injury. 2022 Nov 1; 53 (11): 3617-3623.

    AbstractThe mechanical properties and microstructure of brain tissue, as its two main physical parameters, could be affected by mechanical stimuli. In previous studies, microstructural alterations due to mechanical loading have received less attention than the mechanical properties of the tissue. Therefore, the current study aimed to investigate the effect of ex-vivo mechanical forces on the micro-architecture of brain tissue including axons and glial cells. A three-step loading protocol (i.e., loading-recovery-loading) including eight strain levels from 5% to 40% was applied to bovine brain samples with axons aligned in one preferred direction (each sample experienced only one level of strain). After either the first or secondary loading step, the samples were fixed, cut in planes parallel and perpendicular to the loading direction, and stained for histology. The histological images were analyzed to measure the end-to-end length of axons and glial cell-cell distances. The results showed that after both loading steps, as the strain increased, the changes in the cell nuclei arrangement in the direction parallel to axons were more significant compared to the other two perpendicular directions. Based on this evidence, we hypothesized that the spatial pattern of glial cells is highly affected by the orientation of axonal fibers. Moreover, the results revealed that in both loading steps, the maximum cell-cell distance occurred at 15% strain, and this distance decreased for higher strains. Since 15% strain is close to the previously reported brain injury threshold, this evidence could suggest that at higher strains, the axons start to rupture, causing a reduction in the displacement of glial cells. Accordingly, it was concluded that more attention to glial cells' architecture during mechanical loading may lead to introduce a new biomarker for brain injury.Copyright © 2022. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.