• Medicine · Sep 2022

    Automated and manual microscopic analyses for leukocyte differential counts in exudative pleural effusions: Real-world disagreement and clinical application.

    • Jaehee Lee, Yu Kyung Kim, Ji Eun Park, Yong Hoon Lee, Sun Ha Choi, Hyewon Seo, Seung Soo Yoo, Shin Yup Lee, Seung-Ick Cha, Jae Yong Park, and Chang Ho Kim.
    • Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.
    • Medicine (Baltimore). 2022 Sep 16; 101 (37): e30611.

    AbstractDifferential leukocyte counts of pleural fluid are routinely recommended for the early diagnosis and management of exudative pleural effusions. Rapid automated cellular analysis agrees strongly with standard manual microscopic counts and has become a reality in many clinical laboratories. However, discordant results sometimes observed between automated and manual analyses raise concern about using automated analysis to aid prompt differential diagnosis. This study aimed to evaluate the real-world disagreement between automated and manual leukocyte analyses in exudative pleural effusions and to investigate whether the discordant results occur in specific cellular ranges or randomly. We conducted a retrospective study of patients who were diagnosed with parapneumonic pleural effusions (PPE), tuberculous pleural effusions (TPE), and malignant pleural effusions (MPE) between September 2018 and December 2020. Differential and predominant leukocyte counts were performed using an automated XN-350 analyzer with a two-part differential count consisting of polymorphonuclear (PMN) and mononuclear (MN) leukocytes and a manual method with Wright-stained cytospin slides. We compared the two methods on cases of 109 PPEs, 50 TPEs, and 116 MPEs. Although the overall correlation between the two methods for differential leukocyte counts was excellent, there were etiologic variations; MPEs showed a lower correlation compared to PPEs and TPEs. Automated-PMN predominance almost corresponded to manual cytospin-neutrophilic predominance. In contrast, ~10% of the automated-MN predominance did not correspond with the cytospin-lymphocytic predominance. These discrepancies occurred most in the automated-MN% range of 51% to 60%, followed by 61% to 70%. The PMN% range ≥50% and <30% on the automated analysis reliably corresponds to the neutrophilic and lymphocytic predominance, respectively. However, the MN% range of 51% to 70% may not coincide with lymphocytic predominance on manual cytospin analysis. This range leaves the potential cause of exudative pleural effusions open.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.