• Mol Pain · Apr 2022

    Analgesic effect of recombinant GABAergic precursors releasing MVIIA in a model of peripheral nerve injury in rats.

    • Stanislava Jergova, Melissa Hernandez, and Jacqueline Sagen.
    • Miller School of Medicine, Miami Project, 5452University of Miami, Miami, FL, USA.
    • Mol Pain. 2022 Apr 1; 18: 17448069221129829.

    AbstractDevelopment of chronic pain has been attributed to dysfunctional GABA signaling in the spinal cord. Direct pharmacological interventions on GABA signaling are usually not very efficient and often accompanied by side effects due to the widespread distribution of GABA receptors in CNS. Transplantation of GABAergic neuronal cells may restore the inhibitory potential in the spinal cord. Grafted cells may also release additional analgesic peptides by means of genetic engineering to further enhance the benefits of this approach. Conopeptides are ideal candidates for recombinant expression using cell-based strategies. The omega-conopeptide MVIIA is in clinical use for severe pain marketed as FDA approved Prialt in the form of intrathecal injections. The goal of this study was to develop transplantable recombinant GABAergic cells releasing conopeptide MVIIA and to evaluate the analgesic effect of the grafts in a model of peripheral nerve injury-induced pain. We have engineered and characterized the GABAergic progenitors expressing MVIIA. Recombinant and nonrecombinant cells were intraspinally injected into animals after the nerve injury. Animals were tested weekly up to 12 weeks for the presence of hypersensitivity, followed by histochemical and biochemical analysis of the tissue. We observed beneficial effects of the grafted cells in reducing hypersensitivity in all grafted animals, especially potent in the recombinant group. The level of pain-related cytokines was reduced in the grafted animals and correlation between these pain markers and actual behavior was indicated. This study demonstrated the feasibility of recombinant cell transplantation in the management of chronic pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…