-
- Andrew Yau, Mark W Fear, Nicola Gray, Monique Ryan, Elaine Holmes, Jeremy K Nicholson, Luke Whiley, and Fiona M Wood.
- Burn Injury Research Unit, School of Biomedical sciences, University of Western Australia, Perth, WA, Australia.
- Burns. 2022 Nov 1; 48 (7): 157415831574-1583.
BackgroundSurgical wound excision is a necessary procedure for burn patients that require the removal of eschar. The extent of excision is currently guided by clinical judgement, with excessinto healthy tissue potentially leading to excessive scar, or inadequate debridement increasing risk of infection. Thus, an objective real-time measure to facilitate accurate excision could support clinical judgement and improve this surgical procedure. This study was designed to investigate the potential use of Rapid evaporative ionisation mass spectrometry (REIMS) as a tool to support data-driven objective tissue excision.MethodsData were acquired using a multi-platform approach that consisted of both Rapid Evaporative Ionisation Mass Spectrometry (REIMS) performed on intact skin, and comprehensive liquid chromatography-mass spectrometry (LC-MS/MS) lipidomics performed on homogenised skin tissue extracts. Data were analysed using principal components analysis (PCA) and multivariate orthogonal projections to latent squares discriminant analysis (OPLS-DA) and logistic regression to determine the predictability of the models.ResultsPCA and OPLS-DA models of the REIMS and LC-MS/MS lipidomics data reported separation of excised and healthy tissue. Molecular fingerprints generated from REIMS analysis of healthy skin tissue revealed a high degree of heterogeneity, however, intra-individual variance was smaller than inter-individual variance. Both platforms indicated high levels of skin classification accuracy. In addition, OPLS-DA of the LC-MS/MS lipidomic data revealed significant differences in specific lipid classes between healthy control and excised skin samples; including lower free fatty acids (FFA), monoacylglycerols (MAG), lysophosphatidylglycerol (LPG) and lysophosphatidylethanolamines (LPE) in excised tissue and higher lactosylceramides (LCER) and cholesterol esters (CE) compared to healthy control tissue.ConclusionsHaving established the heterogeneity in the biochemical composition of healthy skin using REIMS and LC-MS/MS, our data show that REIMS has the potential to distinguish between excied and healthy skin tissue samples. This pilot study suggests that REIMS may be an effective tool to support accurate tissue excision during burn surgery.Copyright © 2022 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.