-
- Min-Hsin Huang, Chi-Yeh Chen, Ming-Huwi Horng, Chung-I Li, I-Lin Hsu, Che-Min Su, Yung-Nien Sun, and Chao-Han Lai.
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Anesthesiology. 2022 Dec 1; 137 (6): 704715704-715.
BackgroundImproper endotracheal tube (ETT) positioning is frequently observed and potentially hazardous in the intensive care unit. The authors developed a deep learning-based automatic detection algorithm detecting the ETT tip and carina on portable supine chest radiographs to measure the ETT-carina distance. This study investigated the hypothesis that the algorithm might be more accurate than frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.MethodsA deep learning-based automatic detection algorithm was developed using 1,842 portable supine chest radiographs of 1,842 adult intubated patients, where two board-certified intensivists worked together to annotate the distal ETT end and tracheal bifurcation. The performance of the deep learning-based algorithm was assessed in 4-fold cross-validation (1,842 radiographs), external validation (216 radiographs), and an observer performance test (462 radiographs) involving 11 critical care clinicians. The performance metrics included the errors from the ground truth in ETT tip detection, carina detection, and ETT-carina distance measurement.ResultsDuring 4-fold cross-validation and external validation, the median errors (interquartile range) of the algorithm in ETT-carina distance measurement were 3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer performance test, the median errors (interquartile range) of the algorithm were 2.6 (1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, carina detection, and ETT-carina distance measurement, significantly superior to that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outperformed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT tip detection, carina detection, and ETT-carina distance measurement, respectively. No clinician was significantly more accurate than the algorithm in any comparison.ConclusionsA deep learning-based algorithm can match or even outperform frontline critical care clinicians in ETT tip detection, carina detection, and ETT-carina distance measurement.Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.