• Anesthesia and analgesia · Jan 2023

    Postoperative Delirium Severity and Recovery Correlate With Electroencephalogram Spectral Features.

    • Christian S Guay, MohammadMehdi Kafashan, Emma R Huels, Ying Jiang, Bora Beyoglu, James W Spencer, Kristin Geczi, Ginika Apakama, Yo-El S Ju, Troy S Wildes, Michael S Avidan, and PalancaBen Julian ABJADepartment of Psychiatry.Division of Biology and Biomedical Sciences.Department of Biomedical Engineering; Washington University School of Medicine in St Louis, St Louis, Missouri..
    • From the Department of Anesthesiology.
    • Anesth. Analg. 2023 Jan 1; 136 (1): 140151140-151.

    BackgroundDelirium is an acute syndrome characterized by inattention, disorganized thinking, and an altered level of consciousness. A reliable biomarker for tracking delirium does not exist, but oscillations in the electroencephalogram (EEG) could address this need. We evaluated whether the frequencies of EEG oscillations are associated with delirium onset, severity, and recovery in the postoperative period.MethodsTwenty-six adults enrolled in the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES; ClinicalTrials.gov NCT02241655) study underwent major surgery requiring general anesthesia, and provided longitudinal postoperative EEG recordings for this prespecified substudy. The presence and severity of delirium were evaluated with the confusion assessment method (CAM) or the CAM-intensive care unit. EEG data obtained during awake eyes-open and eyes-closed states yielded relative power in the delta (1-4 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. Discriminability for delirium presence was evaluated with c-statistics. To account for correlation among repeated measures within patients, mixed-effects models were generated to assess relationships between: (1) delirium severity and EEG relative power (ordinal), and (2) EEG relative power and time (linear). Slopes of ordinal and linear mixed-effects models are reported as the change in delirium severity score/change in EEG relative power, and the change in EEG relative power/time (days), respectively. Bonferroni correction was applied to confidence intervals (CIs) to account for multiple comparisons.ResultsOccipital alpha relative power during eyes-closed states offered moderate discriminability (c-statistic, 0.75; 98% CI, 0.58-0.87), varying inversely with delirium severity (slope, -0.67; 98% CI, -1.36 to -0.01; P = .01) and with severity of inattention (slope, -1.44; 98% CI, -2.30 to -0.58; P = .002). Occipital theta relative power during eyes-open states correlated directly with severity of delirium (slope, 1.28; 98% CI, 0.12-2.44; P = .007), inattention (slope, 2.00; 98% CI, 0.48-3.54; P = .01), and disorganized thinking (slope, 3.15; 98% CI, 0.66-5.65; P = .01). Corresponding frontal EEG measures recapitulated these relationships to varying degrees. Severity of altered level of consciousness correlated with frontal theta relative power during eyes-open states (slope, 11.52; 98% CI, 6.33-16.71; P < .001). Frontal theta relative power during eyes-open states correlated inversely with time (slope, -0.05; 98% CI, -0.12 to -0.04; P = .002).ConclusionsPresence, severity, and core features of postoperative delirium covary with spectral features of the EEG. The cost and accessibility of EEG facilitate the translation of these findings to future mechanistic and interventional trials.Copyright © 2022 International Anesthesia Research Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…