-
- Weicai Xu, Xiaojun Li, Long Chen, Xiaopan Luo, Sheliang Shen, and Jing Wang.
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- BMC Anesthesiol. 2022 Sep 26; 22 (1): 304304.
BackgroundRopivacaine is commonly applied for local anesthesia and may cause neurotoxicity. Dexmedetomidine (DEX) exhibits neuroprotective effects on multiple neurological disorders. This study investigated the mechanism of DEX pretreatment in ropivacaine-induced neurotoxicity.MethodsMouse hippocampal neuronal cells (HT22) and human neuroblastoma cells (SH-SY5Y) were treated with 0.5 mM, 1 mM, 2.5 mM, and 5 mM ropivacaine. Then the cells were pretreated with different concentrations of DEX (0.01 μM, 0.1 μM, 1 μM, 10 μM, and 100 μM) before ropivacaine treatment. Proliferative activity of cells, lactate dehydrogenase (LDH) release, and apoptosis rate were measured using CCK-8 assay, LDH detection kit, and flow cytometry, respectively. miR-10b-5p and BDNF expressions were determined using RT-qPCR or Western blot. The binding of miR-10b-5p and BDNF was validated using dual-luciferase assay. Functional rescue experiments were conducted to verify the role of miR-10b-5p and BDNF in the protective mechanism of DEX on ropivacaine-induced neurotoxicity.ResultsTreatment of HT22 or SH-SY5Y cells with ropivacaine led to the increased miR-10b-5p expression (about 1.7 times), decreased BDNF expression (about 2.2 times), reduced cell viability (about 2.5 times), elevated intracellular LDH level (about 2.0-2.5 times), and enhanced apoptosis rate (about 3.0-4.0 times). DEX pretreatment relieved ropivacaine-induced neurotoxicity, as evidenced by enhanced cell viability (about 1.7-2.0 times), reduced LDH release (about 1.7-1.8 times), and suppressed apoptosis rate (about 1.8-1.9 times). DEX pretreatment repressed miR-10b-5p expression (about 2.5 times). miR-10b-5p targeted BDNF. miR-10b-5p overexpression or BDNF silencing reversed the protective effect of DEX pretreatment on ropivacaine-induced neurotoxicity, manifested as reduced cell viability (about 1.3-1.6 times), increased intracellular LDH level (about 1.4-1.7 times), and elevated apoptosis rate (about 1.4-1.6 times).ConclusionsDEX pretreatment elevated BDNF expression by reducing miR-10b-5p expression, thereby alleviating ropivacaine-induced neurotoxicity.© 2022. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.