-
Medical image analysis · Jun 2009
Automated classification of fMRI data employing trial-based imagery tasks.
- Jong-Hwan Lee, Matthew Marzelli, Ferenc A Jolesz, and Seung-Schik Yoo.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Med Image Anal. 2009 Jun 1;13(3):392-404.
AbstractAutomated interpretation and classification of functional MRI (fMRI) data is an emerging research field that enables the characterization of underlying cognitive processes with minimal human intervention. In this work, we present a method for the automated classification of human thoughts reflected on a trial-based paradigm using fMRI with a significantly shortened data acquisition time (less than one minute). Based on our preliminary experience with various cognitive imagery tasks, six characteristic thoughts were chosen as target tasks for the present work: right-hand motor imagery, left-hand motor imagery, right foot motor imagery, mental calculation, internal speech/word generation, and visual imagery. These six tasks were performed by five healthy volunteers and functional images were obtained using a T(*)(2)-weighted echo planar imaging (EPI) sequence. Feature vectors from activation maps, necessary for the classification of neural activity, were automatically extracted from the regions that were consistently and exclusively activated for a given task during the training process. Extracted feature vectors were classified using the support vector machine (SVM) algorithm. Parameter optimization, using a k-fold cross validation scheme, allowed the successful recognition of the six different categories of administered thought tasks with an accuracy of 74.5% (mean)+/-14.3% (standard deviation) across all five subjects. Our proposed study for the automated classification of fMRI data may be utilized in further investigations to monitor/identify human thought processes and their potential link to hardware/computer control.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.