-
- Chih-Wei Wu, Bach-Tung Pham, Jia-Ching Wang, Yao-Kuang Wu, Chan-Yen Kuo, and Yi-Chiung Hsu.
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
- J Formos Med Assoc. 2023 Mar 1; 122 (3): 267275267-275.
BackgroundThere is a lack of published research on the impact of the first wave of the COVID-19 pandemic in Taiwan. We investigated the mortality risk factors among critically ill patients with COVID-19 in Taiwan during the initial wave. Furthermore, we aim to develop a novel AI mortality prediction model using chest X-ray (CXR) alone.MethodWe retrospectively reviewed the medical records of patients with COVID-19 at Taipei Tzu Chi Hospital from May 15 to July 15 2021. We enrolled adult patients who received invasive mechanical ventilation. The CXR images of each enrolled patient were divided into 4 categories (1st, pre-ETT, ETT, and WORST). To establish a prediction model, we used the MobilenetV3-Small model with "Imagenet" pretrained weights, followed by high Dropout regularization layers. We trained the model with these data with Five-Fold Cross-Validation to evaluate model performance.ResultA total of 64 patients were enrolled. The overall mortality rate was 45%. The median time from symptom onset to intubation was 8 days. Vasopressor use and a higher BRIXIA score on the WORST CXR were associated with an increased risk of mortality. The areas under the curve of the 1st, pre-ETT, ETT, and WORST CXRs by the AI model were 0.87, 0.92, 0.96, and 0.93 respectively.ConclusionThe mortality rate of COVID-19 patients who receive invasive mechanical ventilation was high. Septic shock and high BRIXIA score were clinical predictors of mortality. The novel AI mortality prediction model using CXR alone exhibited a high performance.Copyright © 2022 Formosan Medical Association. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.