• J. Thorac. Cardiovasc. Surg. · Jan 2023

    Preclinical feasibility of bronchoscopic fluorescence-guided lung sentinel lymph node mapping.

    • Alexander Gregor, Yuki Sata, Yoshihisa Hiraishi, Tsukasa Ishiwata, Masato Aragaki, Shinsuke Kitazawa, Takamasa Koga, Hiroyuki Ogawa, Nicholas Bernards, and Kazuhiro Yasufuku.
    • Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
    • J. Thorac. Cardiovasc. Surg. 2023 Jan 1; 165 (1): 337350.e2337-350.e2.

    ObjectiveLung sentinel lymph node mapping, where peritumorally injected material is tracked through the lymphatics, aims to find the first potential sites of nodal metastasis. We sought to evaluate the preclinical feasibility of bronchoscopic fluorescence-guided sentinel lymph node mapping.MethodsHealthy Yorkshire pigs were used; sentinel lymph node mapping was performed with indocyanine green. The primary fluorescence imaging method was an ultrathin composite fiberscope placed in the bronchoscope working channel. Secondary methods used a fluorescence thoracoscope placed in the trachea (rigid bronchoscopy) and pretracheal fascial plane (mediastinoscopy) to validate ultrathin composite fiberscope settings for sentinel lymph node detection. A tracheostomy was created, and the pig was placed in a lateral decubitus position. Transbronchial intraparenchymal indocyanine green injection was performed primarily in the right lower lobe. Ultrathin composite fiberscope and rigid bronchoscopy were performed with (n = 6) or without (n = 2) mediastinoscopy, with the former group guiding dose and ultrathin composite fiberscope optimization. Fluorescent targets were interrogated by endobronchial ultrasound before ultrathin composite fiberscope-guided transbronchial needle aspiration. Specimen fluorescence was documented before creating cytological smears. Pigs were killed postprocedure for nodal dissection.ResultsA total of 100 μL of 10 mg/mL indocyanine green generated strong transbronchial fluorescence with low risk of indocyanine green contamination. Fluorescence was detectable by 10 minutes postinjection. There was concordance among ultrathin composite fiberscope, rigid bronchoscopy, and mediastinoscopy. Except for 1 pig with airway contamination, ultrathin composite fiberscope-guided endobronchial ultrasound transbronchial needle aspiration obtained fluorescent material in all pigs. Specimen fluorescence was associated with specimen adequacy.ConclusionsBronchoscopic fluorescence-guided sentinel lymph node mapping was feasible, with specimen fluorescence providing real-time feedback on sentinel lymph node biopsy success. If translated to clinical practice, attention must be paid to minimizing indocyanine green leakage.Copyright © 2022 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.