• Medicine · Oct 2022

    Differential expression of miRNAs in bronchoalveolar lavage fluid and plasma from patients with chronic obstructive pulmonary disease.

    • Jianwu Hu, Weina Wang, Qiaofa Lu, Lifen Du, and Tian Qin.
    • Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China.
    • Medicine (Baltimore). 2022 Oct 7; 101 (40): e30969e30969.

    AbstractMicro RNAs (MiRNAs) act as a key regulator participating in various biological process, and the roles of that play in chronic obstructive pulmonary disease (COPD) are discovered. However, recent pharmacological treatment for COPD focus on alleviating symptoms and reducing the risk events. The heterogeneous COPD causes variable responses to pharmacological interventions. COPD treatment has gradually developed into precision medicine, integrating clinical and biomarker information to optimize personalized therapy. Thus, targeting miRNAs represents a promising strategy for COPD individual therapy. Twelve COPD patients, 7 community-acquired pneumonia and 4 normal people were recruited. Total RNAs were collected from the bronch alveolar lavage cells and peripheral blood plasma of each participant. miRNAs were profiled by microarray and systematically compared between patients with different groups. Bioinformatic analysis identified pathways relevant to the pathogenesis of COPD. Next, the target pathway networks were mapped. Compared different groups, we obtain differential expression of miRNAs (Q value (Adjusted P value) < .05 and |log2FC| >2). Gene ontology enrichment analyses showed that differentially expressed miRNAs function as regulators in different modules of cellular component, molecular function and biological process. Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that signals, such as MAPK signaling pathway, Ras signaling pathway, FoxO signaling pathway and oxidative stress may participate in the pathogenesis of COPD. In the miRNAs target pathway networks, novel-hsa-miR26-3p or hsa-miR-3529-3p/CDC42/MAPK signaling pathway may play a role in regulating COPD. Our findings demonstrate critical roles of the miRNAs in COPD molecular pathology. The data support a plausible mechanism that miRNAs may be involved in the development of COPD by affecting the inflammatory and oxidative stress. Moreover, hsa-miR-4748/CDC42/MAPK signaling pathway may contribute to the pathogenesis of COPD, providing a potential novel therapeutic strategy in COPD.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…