• Cochrane Db Syst Rev · Oct 2022

    Review

    Antihistamines for motion sickness.

    • Nadine Karrim, Ryan Byrne, Nombulelo Magula, and Yougan Saman.
    • Institute of Research into Space Health and Astronaut Development, International Centre for Astronautical Development, Durban, South Africa.
    • Cochrane Db Syst Rev. 2022 Oct 17; 10 (10): CD012715CD012715.

    BackgroundMotion sickness is a syndrome that occurs as a result of passive body movement in response to actual motion, or the illusion of motion when exposed to virtual and moving visual environments. The most common symptoms are nausea and vomiting. Antihistamines have been used in the management of motion sickness for decades, however studies have shown conflicting results regarding their efficacy.ObjectivesTo assess the effectiveness of antihistamines in the prevention and treatment of motion sickness in adults and children.Search MethodsThe Cochrane ENT Information Specialist searched the Cochrane ENT Register; Central Register of Controlled Trials; Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 7 December 2021.Selection CriteriaRandomised controlled trials (RCTs) in susceptible adults and children in whom motion sickness was induced under natural conditions such as air, sea and land transportation. We also included studies in which motion sickness was induced under experimental conditions (analysed separately). Antihistamines were included regardless of class, route or dosage and compared to no treatment, placebo or any other pharmacological or non-pharmacological interventions.Data Collection And AnalysisWe used standard Cochrane methods. Our primary outcomes were 1) the proportion of susceptible participants who did not experience any motion sickness symptoms; 2) the proportion of susceptible participants who experienced a reduction or resolution of existing symptoms. Secondary outcomes were 1) physiological measures (heart rate, core temperature and gastric tachyarrhythmia (electrogastrography)) and 2) adverse effects (sedation, impaired cognition, blurred vision). We used GRADE to assess the certainty of the evidence for each outcome.Main ResultsWe included nine RCTs (658 participants). Studies were conducted across seven countries, with an overall age range of 16 to 55 years. Motion sickness was induced naturally in six studies and experimentally in four studies (rotating chair). All the naturally induced studies only evaluated first-generation antihistamines (cinnarizine and dimenhydrinate). Risk of bias across the studies varied, with mostly low risk for random sequence generation and allocation concealment, and mostly high risk for selective reporting. Only the experimentally induced studies measured physiological parameters and only the naturally induced studies evaluated adverse effects. There were no studies that clearly assessed the paediatric population. Antihistamines versus placebo or no treatment Antihistamines are probably more effective than placebo at preventing motion sickness symptoms under natural conditions (symptoms prevented: 25% placebo; 40% antihistamines) (risk ratio (RR) 1.81, 95% confidence interval (CI) 1.23 to 2.66; 3 studies; 240 participants) (moderate-certainty). The evidence is very uncertain about the effect of antihistamines on preventing motion sickness under experimental conditions (standardised mean difference (SMD) 0.32, 95% CI -0.18 to 0.83; 2 studies; 62 participants) (very low-certainty). No studies reported results on the resolution of existing motion sickness symptoms. Antihistamines may result in little or no difference in gastric tachyarrhythmia under experimental conditions (mean difference (MD) -2.2, 95% CI -11.71 to 7.31; 1 study; 42 participants) (low-certainty). No studies reported results for any other physiological measures. When compared to placebo, antihistamines may be more likely to cause sedation (sedation: 44% placebo; 66% antihistamines) (RR 1.51, 95% CI 1.12 to 2.02; 2 studies; 190 participants) (low-certainty); they may result in little or no difference in blurred vision (blurred vision: 12.5% placebo; 14% antihistamines) (RR 1.14, 95% CI 0.53 to 2.48; 2 studies; 190 participants) (low-certainty); and they may result in little or no difference in terms of impaired cognition (impaired cognition: 33% placebo; 29% antihistamines) (RR 0.89, 95% CI 0.58 to 1.38; 2 studies; 190 participants) (low-certainty). Antihistamines versus scopolamine The evidence is very uncertain about the effect of antihistamines on preventing motion sickness under natural conditions when compared to scopolamine (symptoms prevented: 81% scopolamine; 71% antihistamines) (RR 0.89, 95% CI 0.68 to 1.16; 2 studies; 71 participants) (very low-certainty). No studies were performed under experimental conditions. No studies reported results on the resolution of existing motion sickness symptoms. The evidence is very uncertain about the effect of antihistamines on heart rate under natural conditions (narrative report, 1 study; 20 participants; "No difference in pulse frequency"; very low-certainty). No studies reported results for any other physiological measures. When compared to scopolamine, the evidence is very uncertain about the effect of antihistamines on sedation (sedation: 21% scopolamine; 30% antihistamines) (RR 0.82, 95% CI 0.07 to 9.25; 2 studies; 90 participants) (very low-certainty) and on blurred vision (narrative report: not a significant difference; 1 study; 51 participants; very low-certainty). No studies evaluated impaired cognition. Antihistamines versus antiemetics Antihistamines may result in little or no difference in the prevention of motion sickness under experimental conditions (MD -0.20, 95% CI -10.91 to 10.51; 1 study; 42 participants) (low-certainty). The evidence is of low certainty due to imprecision as the sample size is small and the confidence interval crosses the line of no effect. No studies assessed the effects of antihistamines versus antiemetics under natural conditions. No studies reported results on the resolution of existing motion sickness symptoms. Antihistamines may result in little or no difference in gastric tachyarrhythmia (MD 4.56, 95% CI -3.49 to 12.61; 1 study; 42 participants) (low-certainty). No studies reported results for any other physiological measures. No studies evaluated sedation, impaired cognition or blurred vision. One study reported physiological data for this outcome, evaluating gastric tachyarrhythmia specifically. Antihistamines may result in little or no difference in gastric tachyarrhythmia (MD 4.56, 95% CI -3.49 to 12.61; 1 study; 42 participants; low-certainty evidence). This evidence is of low certainty due to imprecision as the sample size is small and the confidence interval crosses the line of no effect. Antihistamines versus acupuncture The evidence is very uncertain about the effects of antihistamines on the prevention of motion sickness under experimental conditions when compared to acupuncture (RR 1.32, 95% CI 1.12 to 1.57; 1 study; 100 participants) (very low-certainty). This study did not assess the prevention of motion sickness under natural conditions, nor the resolution of existing motion sickness symptoms. There was no study performed under natural conditions. Physiological measures and adverse effects were not reported.Authors' ConclusionsThere is probably a reduction in the risk of developing motion sickness symptoms under naturally occurring conditions of motion when using first-generation antihistamines, in motion sickness-susceptible adults, compared to placebo. Antihistamines may be more likely to cause sedation when compared to placebo. No studies evaluated the treatment of existing motion sickness, and there are few data on the effect of antihistamines in children. The evidence for all other outcomes and comparisons (versus scopolamine, antiemetics and acupuncture) was of low or very low certainty and we are therefore uncertain about these effects of antihistamines.Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.