-
- Hyung Jun Moon, Yong Jin Shin, and Young Soon Cho.
- Department of Emergency Medicine, College of Medicine, Soonchunhyang University, Republic of Korea.
- Am J Emerg Med. 2022 Dec 1; 62: 414841-48.
AimOut-of-hospital cardiac arrest (OHCA) is a leading cause of death, and research has identified limitations in analyzing the factors related to the incidence of cardiac arrest and the frequency of bystander cardiopulmonary resuscitation. This study conducts a cluster analysis of the correlation between location-related factors and the outcome of patients with OHCA using two machine learning methods: variational autoencoder (VAE) and the Dirichlet process mixture model (DPMM).MethodsUsing the prospectively collected Smart Advanced Life Support registry in South Korea between August 2015 and December 2018, a secondary retrospective data analysis was performed on patients with OHCA with a presumed cause of cardiac arrest in adults of 18 years or older. VAE and DPMM were used to create clusters to determine groups with a common nature among those with OHCA.ResultsAmong 5876 OHCA cases, 1510 patients were enrolled in the final analysis. Decision tree-based models, which have an accuracy of 95.36%, were also used to interpret the characteristics of clusters. A total of 8 clusters that had similar spatial characteristics were identified using DPMM and VAE. Among the generated clusters, the averages of the four clusters that exhibited a high survival to discharge rate and a favorable neurological outcome were 9.6% and 6.1%, and the averages of the four clusters that exhibited a low outcome were 5.1% and 3.5% respectively. In the decision tree-based models, the most important feature that could affect the prognosis of an OHCA patient was being transferred to a higher-level emergency center.ConclusionThis methodology can facilitate the development of a regionalization strategy that can improve the survival rate of cardiac arrest patients in different regions.Copyright © 2022. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.