• Prehosp Emerg Care · Jan 2024

    Machine learning analysis to identify data entry errors in prehospital patient care reports: a case study of a national out-of-hospital cardiac arrest registry.

    • Dong Hyun Choi, Jeong Ho Park, ChoiYoung HoYH0000-0003-3866-1237Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.Department of Emergency Medicine, Seoul National University Bundang Hospital, Bundang, Re, Kyoung Jun Song, Sungwan Kim, and Sang Do Shin.
    • Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea.
    • Prehosp Emerg Care. 2024 Jan 1; 28 (1): 142214-22.

    AbstractBackground: The objective of this study was to develop and validate machine learning models for data entry error detection in a national out-of-hospital cardiac arrest (OHCA) prehospital patient care report database.Methods: Adult OHCAs of presumed cardiac etiology were included. Data entry errors were defined as discrepancies between the coded data and the free-text note documenting the intervention or event; for example, information that was recorded as "absent" in the coded data but "present" in the free-text note. Machine learning models using the extreme gradient boosting, logistic regression, extreme gradient boosting outlier detection, and K-nearest neighbor outlier detection algorithms for error detection within nine core variables were developed and then validated for each variable.Results: Among 12,100 OHCAs, the proportion of cases with at least one error type was 16.2%. The area under the receiver operating characteristic curve (AUC) of the best-performing model (model with the highest AUC for each outcome variable) was 0.71-0.95. Machine learning models detected errors most efficiently for outcome place and initial rhythm errors; 82.6% of place errors and 93.8% of initial rhythm errors could be detected while checking 11 and 35% of data, respectively, compared to the strategy of checking all data.Conclusion: Machine learning models can detect data entry errors in care reports of emergency medical services (EMS) clinicians with acceptable performance and likely can improve the efficiency of the process of data quality control. EMS organizations that provide more prehospital interventions for OHCA patients could have higher error rates and may benefit from the adoption of error-detection models.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.