• Medicine · Oct 2022

    Case Reports

    Potential pathogenic mechanism of type 1 X-linked lymphoproliferative syndrome caused by a mutation of SH2D1A gene in an infant: A case report.

    • Yanchun Wang, Yan Wang, Weimin Lu, Lvyan Tao, Yang Xiao, Yuantao Zhou, Xiaoli He, Yu Zhang, and Li Li.
    • Second Department of Infectious Disease, Kunming Children's Hospital, Kunming, Yunnan, China.
    • Medicine (Baltimore). 2022 Oct 14; 101 (41): e30951.

    BackgroundX-linked lymphoproliferative syndrome (XLP) is a rare X-linked recessive inborn errors of immunity. The pathogenesis of XLP might be related to phophatidylinositol-3-kinase (PI3K)-associated pathways but insight details remain unclear. This study was to study an infant XLP-1 case caused by a mutation in SH2D1A gene, investigate the structural and functional alteration of mutant SAP protein, and explore the potential role of PI3K-associated pathways in the progression of XLP-1.MethodsThe proband's condition was monitored by laboratory and imagological examinations. Whole exome sequencing and Sanger sequencing were performed to detect the genetic disorder. Bioinformatics tools including PolyPhen-2, SWISS-MODEL and SWISS-PDB Viewer were used to predict the pathogenicity and estimate structural change of mutant protein. Flow cytometry was used to investigate expression of SAP and PI3K-associated proteins.ResultsThe proband was diagnosed with XLP-1 caused by a hemizygous mutation c.96G > T in SH2D1A gene resulting in a missense substitution of Arginine to Serine at the site of amino acid 32 (p.R32S). The mutant protein contained a hydrogen bond turnover at the site of mutation and was predicted to be highly pathogenic. Expression of SH2D1A encoded protein SAP was downregulated in proband. The PI3K-AKT-mTOR signaling pathway was fully activated in XLP-1 patients, but it was inactive or only partially activated in healthy people or HLH patients.ConclusionsThe mutation c.96G > T in SH2D1A gene caused structural and functional changes in the SAP protein, resulting in XLP-1. The PI3K-AKT-mTOR signaling pathway may play a role in XLP-1 pathogenesis.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…