-
- Wenqiang Huang, Jinghui Li, Xin Geng, Shipeng Li, Yanghong Zou, Yao Li, Cong Jing, and Hualin Yu.
- Second Department of Neurosurgery, First affiliated hospital of Kunming medical university, Kunming, Yunnan, China.
- World Neurosurg. 2022 Dec 1; 168: e595e606e595-e606.
BackgroundSurgical resection is a key method for glioma treatment. This inherently invasive procedure alters the tumor microenvironment of glioma cells that cannot be removed by surgery. However, few studies have focused on the impact of this microenvironment change on the growth of glioma cells.MethodsThe authors preconstructed a surgical brain injury model, and then C6 glioma cells were transplanted. HE staining was used to observe the general morphology of tumor cells, and immunohistochemistry of MMP-2, MMP-9, GFAP, and CD31 was used to evaluate the invasiveness of glioma cells and activation of astrocytes and calculate microvessel density. In vitro, primary rat astrocytes were exposed to different temperature gradients. The supernatant was made into conditioned medium for culturing C6 glioma cells. The scratch test and transwell test were used to evaluate the migration and invasion of tumor cells.ResultsGFAP expression was stronger in surgical brain injury rats, C6 cells implanted in these rats showed stronger expression of MMP-2 and MMP-9, and CD31 was expressed in more microvessels. Astrocytes exposed to high temperatures of 40°C and 43°C expressed stronger GFAP, and C6 cells cultured in their supernatants had stronger scratch healing ability and the ability to cross transwell chambers.ConclusionsThe microenvironment changes caused by surgical brain injury will enhance the migration and invasion of glioma cells and increase the microvessel density in the tumor. This effect may be related to the activation of astrocytes caused by the thermal injury of bipolar coagulation during surgery.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.