-
Randomized Controlled Trial
Exercise Facilitates the M1-to-M2 Polarization of Microglia by Enhancing Autophagy via the BDNF/AKT/mTOR Pathway in Neuropathic Pain.
- Jie Bai, Bin Geng, Xingwen Wang, Shenghong Wang, Qiong Yi, Yuchen Tang, and Yayi Xia.
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China.
- Pain Physician. 2022 Oct 1; 25 (7): E1137E1151E1137-E1151.
BackgroundIn neuropathic pain following peripheral nerve injury, microglia are rapidly activated and accumulated in the spinal cord. Physical exercise can alleviate neuropathic pain. However, the exact mechanism underlying this analgesic effect is not fully understood.ObjectivesWe aimed to investigate the molecular mechanisms by which exercise alleviates neuropathic pain in relation to brain-derived neurotrophic factor (BDNF), microglia polarization, and autophagy.Study DesignA randomized controlled animal study divided into 2 stages. The first stage comprised 4 groups each with 6 mice, and the second stage comprised 6 groups, 3 with 18 mice and 3 with 12 mice.SettingDepartment of Anesthesiology, Lanzhou University Second Hospital, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University.MethodsVon Frey filaments, Western blotting, immunofluorescence, and transmission electron microscopy analyses were conducted to detect relevant markers.ResultsAfter peripheral nerve injury, exercise training downregulated BDNF expression and reversed microglial activation, as indicated by the increased expression of the M2 marker CD206 and decreased expression of the M1 marker CD86 in the spinal dorsal horn of mice. Autophagy flux was enhanced after exercise training, as suggested by the increased expression of the autophagy markers LC3-II/LC3-I and Beclin1 and decreased expression of the autophagy adaptor protein p62. Furthermore, autophagy inhibition by 3-methyladenine aggravated M1 polarization and hyperalgesia, whereas autophagy induced by rapamycin promoted M2 polarization and reduced hyperalgesia. Intrathecal injection of BDNF significantly upregulated BDNF expression, inhibited autophagy, triggered M1 polarization of spinal microglia, and aggravated hyperalgesia. Furthermore, BDNF regulated autophagy through the AKT/mTOR pathway, thereby participating in exercise training-mediated polarization of microglia after nerve injury.LimitationsThe effect of exercise on autophagy and pain cannot be assessed in an in vitro model. The influence of intrathecal injection of BDNF on the metabolic changes in other neuronal cells and the subsequent effects on pain should be investigated. Further studies on how exercise training modulates microglial autophagy to alleviate neuropathic pain are needed.ConclusionsExercise training promoted the recovery of sciatic nerve injury in mice, possibly by regulating microglial polarization through BDNF/AKT/mTOR signaling-mediated autophagy flux. We confirmed the efficacy of exercise training in alleviating neuropathic pain and suggest a new therapeutic target for neuropathic pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.