• Journal of neurosurgery · Jun 2023

    Precuneal gliomas promote behaviorally relevant remodeling of the functional connectome.

    • Sam Ng, Jeremy Deverdun, Anne-Laure Lemaitre, Davide Giampiccolo, BarsEmmanuelle LeEL3I2FH, Institut d'Imagerie Fonctionnelle Humaine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.4Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier., Sylvie Moritz-Gasser, Menjot de ChampfleurNicolasN3I2FH, Institut d'Imagerie Fonctionnelle Humaine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.4Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellie, Hugues Duffau, and Guillaume Herbet.
    • Departments of1Neurosurgery and.
    • J. Neurosurg. 2023 Jun 1; 138 (6): 153115411531-1541.

    ObjectiveThe precuneus hosts one of the most complex patterns of functional connectivity in the human brain. However, due to the extreme rarity of neurological lesions specifically targeting this structure, it remains unknown how focal damage to the precuneus may impact resting-state functional connectivity (rsFC) at the brainwide level. The aim of this study was to investigate glioma-induced rsFC modulations and to identify patterns of rsFC remodeling that accounted for the maintenance of cognitive performance after awake-guided surgical excision.MethodsIn a unique series of patients with IDH1-mutated low-grade gliomas (LGGs) infiltrating the precuneus who were treated at a single neurosurgical center (Montpellier University Medical Center, 2014-2021), the authors gauged the dynamic modulations induced by tumors on rsFC in comparison with healthy participants. All patients received a preoperative resting-state functional MRI and underwent operation guided by awake cognitive mapping. Connectome multivariate pattern analysis (MVPA), seed-network analysis, and graph theoretical analysis were conducted and correlated to executive neurocognitive scores (i.e., phonological and semantic fluencies, Trail-Making Test [TMT] parts A and B) obtained 3 months after surgery.ResultsSeventeen patients with focal precuneal infiltration were selected (mean age 38.1 ± 11.2 years) and matched to 17 healthy participants (mean age 40.5 ± 10.4 years) for rsFC analyses. All patients underwent awake cognitive mapping, allowing total resection (n = 3) or subtotal resection (n = 14), with a mean extent of resection of 90.6% ± 7.3%. Using MVPA (cluster threshold: p-false discovery rate corrected < 0.05, voxel threshold: p-uncorrected < 0.001), remote hotspots with significant rsFC changes were identified, including both insulas, the anterior cingulate cortex, superior sensorimotor cortices, and both frontal eye fields. Further seed-network analyses captured 2 patterns of between-network redistribution especially involving hyperconnectivity between the salience, visual, and dorsal attentional networks. Finally, the global efficiency of the salience-visual-dorsal attentional networks was strongly and positively correlated to 3-month postsurgical scores (n = 15) for phonological fluency (r15 = 0.74, p = 0.0027); TMT-A (r15 = 0.65, p = 0.012); TMT-B (r15 = 0.70, p = 0.005); and TMT-B-A (r15 = 0.62, p = 0.018).ConclusionsIn patients with LGGs infiltrating the precuneus, remote and distributed functional connectivity modulations in the preoperative setting are associated with better maintenance of cognitive performance after surgery. These findings provide a new vision of the mechanistic principles underlying neural plasticity and cognitive compensation in patients with LGGs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…