• Medicina · Sep 2022

    Integrating Radiosensitivity Gene Signature Improves Glioma Outcome and Radiotherapy Response Prediction.

    • Shan Wu, Jing Xu, Guang Li, and Xi Jin.
    • Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
    • Medicina (Kaunas). 2022 Sep 22; 58 (10).

    AbstractResponse to radiotherapy (RT) in gliomas varies widely between patients. It is necessary to identify glioma-associated radiosensitivity gene signatures for clinically stratifying patients who will benefit from adjuvant radiotherapy after glioma surgery. Methods: Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) glioma patient datasets were used to validate the predictive potential of two published biomarkers, the radiosensitivity index (RSI) and 31-gene signature (31-GS). To adjust these markers for the characteristics of glioma, we integrated four new glioma-associated radiosensitivity predictive indexes based on RSI and 31-GS by the Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. A receiver operating characteristic (ROC) curve, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to compare the radiosensitivity predictive ability of these six gene signatures. Subgroup analysis was used to evaluate the discriminative capacity of those gene signatures in identifying radiosensitive patients, and a nomogram was built to improve the histological grading system. Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) were used to explore related biological processes. Results: We validated and compared the predictive potential of two published predictive indexes. The AUC area of 31-GS was higher than that of RSI. Based on the RSI and 31-GS, we integrated four new glioma-associated radiosensitivity predictive indexes-PI10, PI12, PI31 and PI41. Among them, a 12-gene radiosensitivity predictive index (PI12) showed the most promising predictive performance and discriminative capacity. Examination of a nomogram created from clinical features and PI12 revealed that its predictive capacity was superior to the traditional WHO classification system. (C-index: 0.842 vs. 0.787, p ≤ 2.2 × 10-16) The GO analysis and GSEA showed that tumors with a high PI12 score correlated with various aspects of the malignancy of glioma. Conclusions: The glioma-associated radiosensitivity gene signature PI12 is a promising radiosensitivity predictive biomarker for guiding effective personalized radiotherapy for gliomas.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…