• Int J Med Sci · Jan 2022

    Application of artificial intelligence in diagnosing COVID-19 disease symptoms on chest X-rays: A systematic review.

    • Jakub Kufel, Katarzyna Bargieł, Maciej Koźlik, Łukasz Czogalik, Piotr Dudek, Aleksander Jaworski, Maciej Cebula, and Katarzyna Gruszczyńska.
    • Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland.
    • Int J Med Sci. 2022 Jan 1; 19 (12): 1743-1752.

    AbstractThis systematic review focuses on using artificial intelligence (AI) to detect COVID-19 infection with the help of X-ray images. Methodology: In January 2022, the authors searched PubMed, Embase and Scopus using specific medical subject headings terms and filters. All articles were independently reviewed by two reviewers. All conflicts resulting from a misunderstanding were resolved by a third independent researcher. After assessing abstracts and article usefulness, eliminating repetitions and applying inclusion and exclusion criteria, six studies were found to be qualified for this study. Results: The findings from individual studies differed due to the various approaches of the authors. Sensitivity was 72.59%-100%, specificity was 79%-99.9%, precision was 74.74%-98.7%, accuracy was 76.18%-99.81%, and the area under the curve was 95.24%-97.7%. Conclusion: AI computational models used to assess chest X-rays in the process of diagnosing COVID-19 should achieve sufficiently high sensitivity and specificity. Their results and performance should be repeatable to make them dependable for clinicians. Moreover, these additional diagnostic tools should be more affordable and faster than the currently available procedures. The performance and calculations of AI-based systems should take clinical data into account.© The author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.