• Medicine · Oct 2022

    Network pharmacology and molecular docking analysis on the mechanism of Baihe Zhimu decoction in the treatment of postpartum depression.

    • Qiong Zhao, Wengu Pan, Hongshuo Shi, Fanghua Qi, Yuan Liu, Tiantian Yang, Hao Si, and Guomin Si.
    • School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
    • Medicine (Baltimore). 2022 Oct 28; 101 (43): e29323e29323.

    AbstractBaihe Zhimu decoction (BZD) has significant antidepressant properties and is widely used to treat mental diseases. However, the multitarget mechanism of BZD in postpartum depression (PPD) remains to be elucidated. Therefore, the aim of this study was to explore the molecular mechanisms of BDZ in treating PPD using network pharmacology and molecular docking. Active components and their target proteins were screened from the traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The PPD-related targets were obtained from the OMIM, CTD, and GeneCards databases. After overlap, the targets of BZD against PPD were collected. Protein-protein interaction (PPI) network and core target analyses were conducted using the STRING network platform and Cytoscape software. Moreover, molecular docking methods were used to confirm the high affinity between BZD and targets. Finally, the DAVID online tool was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets. The TCMSP database showed that BZD contained 23 active ingredients in PPD. KEGG analysis showed that overlapping genes were mainly enriched in HIF-1, dopaminergic synapses, estrogen, and serotonergic synaptic signalling pathways. Combining the PPI network and KEGG enrichment analysis, we found that ESR1, MAOA, NR3C1, VEGFA, and mTOR were the key targets of PPD. In addition, molecular docking confirmed the high affinity between BZD and the PPD target. Verified by a network pharmacology approach based on data mining and molecular docking methods, the multi-target drug BZD may serve as a promising therapeutic candidate for PPD, but further in vivo/in vitro experiments are needed.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…