• Shock · Aug 2009

    Mathematical modeling of posthemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus.

    • Andres Torres, Timothy Bentley, John Bartels, Joydeep Sarkar, Derek Barclay, Rajaie Namas, Gregory Constantine, Ruben Zamora, Juan Carlos Puyana, and Yoram Vodovotz.
    • Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
    • Shock. 2009 Aug 1; 32 (2): 172-8.

    AbstractHemorrhagic shock (HS) elicits a global acute inflammatory response, organ dysfunction, and death. We have used mathematical modeling of inflammation and tissue damage/dysfunction to gain insight into this complex response in mice. We sought to increase the fidelity of our mathematical model and to establish a platform for testing predictions of this model. Accordingly, we constructed a computerized, closed-loop system for mouse HS. The intensity, duration, and time to achieve target MAP could all be controlled using a software. Fifty-four male C57/black mice either were untreated or underwent surgical cannulation. The cannulated mice were divided into 8 groups: (a) 1, 2, 3, or 4 h of surgical cannulation alone and b) 1, 2, 3, or 4 h of cannulation + HS (25 mmHg). MAP was sustained by the computer-controlled reinfusion and withdrawal of shed blood within +/-2 mmHg. Plasma was assayed for the cytokines TNF, IL-6, and IL-10 as well as the NO reaction products NO2-/NO3-. The cytokine and NO2-/NO3- data were compared with predictions from a mathematical model of post-hemorrhage inflammation, which was calibrated on different data. To varying degrees, the levels of TNF, IL-6, IL-10, and NO2/NO3 predicted by the mathematical model matched these data closely. In conclusion, we have established a hardware/software platform that allows for highly accurate, reproducible, and mathematically predictable HS in mice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…