• Crit Care · Nov 2022

    Randomized Controlled Trial

    Longitudinal phenotypes in patients with acute respiratory distress syndrome: a multi-database study.

    • Hui Chen, Qian Yu, Jianfeng Xie, Songqiao Liu, Chun Pan, Ling Liu, Yingzi Huang, Fengmei Guo, Haibo Qiu, and Yi Yang.
    • Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China.
    • Crit Care. 2022 Nov 4; 26 (1): 340.

    BackgroundPreviously identified phenotypes of acute respiratory distress syndrome (ARDS) have been limited by a disregard for temporal dynamics. We aimed to identify longitudinal phenotypes in ARDS to test the prognostic and predictive enrichment of longitudinal phenotypes, and to develop simplified models for phenotype identification.MethodsWe conducted a multi-database study based on the Chinese Database in Intensive Care (CDIC) and four ARDS randomized clinical trials (RCTs). We employed latent class analysis (LCA) to identify longitudinal phenotypes using 24-hourly data from the first four days of invasive ventilation. We used the Cox regression model to explore the association between time-varying respiratory parameters and 28-day mortality across phenotypes. Phenotypes were validated in four RCTs, and the heterogeneity of treatment effect (HTE) was investigated. We also constructed two multinomial logistical regression analyses to develop the probabilistic models.FindingsA total of 605 ARDS patients in CDIC were enrolled. The three-class LCA model was identified and had the optimal fit, as follows: Class 1 (n = 400, 66.1% of the cohort) was the largest phenotype over all study days, and had fewer abnormal values, less organ dysfunction and the lowest 28-day mortality rate (30.5%). Class 2 (n = 102, 16.9% of the cohort) was characterized by pulmonary mechanical dysfunction and had the highest proportion of poorly aerated lung volume, the 28-day mortality rate was 47.1%. Class 3 (n = 103, 17% of the cohort) was correlated with extra-pulmonary dysfunction and had the highest 28-day mortality rate (56.3%). Time-varying mechanical power was more significantly associated with 28-day mortality in Class 2 patients compared to other phenotypes. Similar phenotypes were identified in four RCTs. A significant HTE between phenotypes and treatment strategies was observed in the ALVEOLI (high PEEP vs. low PEEP) and the FACTT trials (conservative vs. liberal fluid management). Two parsimonious probabilistic models were constructed to identify longitudinal phenotypes.InterpretationWe identified and validated three novel longitudinal phenotypes for ARDS patients, with both prognostic and predictive enrichment. The phenotypes of ARDS can be accurately identified with simple classifier models, except for Class 3.© 2022. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.