-
- Nrupen A Bhavsar, Lexie Zidanyue Yang, Matthew Phelan, Megan Shepherd-Banigan, Benjamin A Goldstein, Sarah Peskoe, Priya Palta, Jana A Hirsch, Nia S Mitchell, Annemarie G Hirsch, Joseph Lunyera, Dinushika Mohottige, Clarissa J Diamantidis, Matthew L Maciejewski, and L Ebony Boulware.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA. nrupen.bhavsar@duke.edu.
- J Urban Health. 2022 Dec 1; 99 (6): 984997984-997.
AbstractThere is tremendous interest in understanding how neighborhoods impact health by linking extant social and environmental drivers of health (SDOH) data with electronic health record (EHR) data. Studies quantifying such associations often use static neighborhood measures. Little research examines the impact of gentrification-a measure of neighborhood change-on the health of long-term neighborhood residents using EHR data, which may have a more generalizable population than traditional approaches. We quantified associations between gentrification and health and healthcare utilization by linking longitudinal socioeconomic data from the American Community Survey with EHR data across two health systems accessed by long-term residents of Durham County, NC, from 2007 to 2017. Census block group-level neighborhoods were eligible to be gentrified if they had low socioeconomic status relative to the county average. Gentrification was defined using socioeconomic data from 2006 to 2010 and 2011-2015, with the Steinmetz-Wood definition. Multivariable logistic and Poisson regression models estimated associations between gentrification and development of health indicators (cardiovascular disease, hypertension, diabetes, obesity, asthma, depression) or healthcare encounters (emergency department [ED], inpatient, or outpatient). Sensitivity analyses examined two alternative gentrification measures. Of the 99 block groups within the city of Durham, 28 were eligible (N = 10,807; median age = 42; 83% Black; 55% female) and 5 gentrified. Individuals in gentrifying neighborhoods had lower odds of obesity (odds ratio [OR] = 0.89; 95% confidence interval [CI]: 0.81-0.99), higher odds of an ED encounter (OR = 1.10; 95% CI: 1.01-1.20), and lower risk for outpatient encounters (incidence rate ratio = 0.93; 95% CI: 0.87-1.00) compared with non-gentrifying neighborhoods. The association between gentrification and health and healthcare utilization was sensitive to gentrification definition.© 2022. The New York Academy of Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.