• Medicina · Oct 2022

    Staphylococcus epidermidis Pathogenesis: Interplay of icaADBC Operon and MSCRAMMs in Biofilm Formation of Isolates from Pediatric Bacteremia in Peshawar, Pakistan.

    • Saghir Ahmad, Hazir Rahman, Muhammad Qasim, Javed Nawab, Khalid J Alzahrani, Khalaf F Alsharif, and Fuad M Alzahrani.
    • Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan.
    • Medicina (Kaunas). 2022 Oct 24; 58 (11).

    AbstractBackground and Objective: Staphylococcus epidermidis is an opportunistic pathogen from pediatric bacteremia that is commonly isolated. Biofilm is the major virulence factor of S. epidermidis; however, the role of biofilm determinants in biofilm formation is highly contradictory and diverse. The current study aimed to investigate the role of polysaccharide-dependent and polysaccharide-independent pathogenic determinants in biofilm formation under physiological stress conditions. Materials and Methods: The isolates (n = 75) were identified and screened for the icaADBC operon, IS256, and an array of MSCRAMMs (Microbial Surface Component Recognizing Adhesive Matrix Molecules) through PCR analysis. The activity of the icaADBC operon was detected by Congo red assay, and the biofilm formation was analyzed through microtiter plate assay. Results: S. epidermidis isolates produced biofilm (n = 65; 86.6%) frequently. The icaA was the major representative module of the actively expressing icaADBC operon (n = 21; 80.7% sensitivity). The MSCRAMMs, including fbe (n = 59; 90.7%; p = 0.007), and embp (n = 57; 87.6%; p = 0.026), were highly prevalent and associated with biofilm positive S. epidermidis. The prevalence of icaADBC operon in biofilm positive and negative S. epidermidis was not significant (n = 41; 63%; p = 0.429). No significant association was found between IS256 and actively complete icaADBC operon (n = 10; 47.6%; p = 0.294). In the presence of 5% human plasma and glucose stress, S. epidermidis produced a strong biofilm (n = 55; 84.6%). Conclusion: The polysaccharide-dependent biofilm formation is significantly replaced (n = 21; 28%; p = 0.149) by a polysaccharide-independent mechanism (n = 59; 90.7%; p = 0.007), in which the MSCRAMMs might actively play their role. The fibrinogen-binding protein and extracellular matrix-binding protein might be potential anti-biofilm drug targets, markers of rapid diagnosis, and potential vaccine candidates of S. epidermidis involved in pediatric bacteremia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.