-
- Maria De-Arteaga and Jonathan Elmer.
- Information, Risk and Operations Management Department, McCombs School of Business, University of Texas at Austin, Austin, TX, USA.
- Resuscitation. 2023 Feb 1; 183: 109622109622.
IntroductionGrowth of machine learning (ML) in healthcare has increased potential for observational data to guide clinical practice systematically. This can create self-fulfilling prophecies (SFPs), which arise when prediction of an outcome increases the chance that the outcome occurs.MethodsWe performed a scoping review, searching PubMed and ArXiv using terms related to machine learning, algorithmic fairness and bias. We reviewed results and selected manuscripts for inclusion based on expert opinion of well-designed or key studies and review articles. We summarized these articles to explore how use of ML can create, perpetuate or compound SFPs, and offer recommendations to mitigate these risks.ResultsWe identify-four key mechanisms through which SFPs may be reproduced or compounded by ML. First, imperfect human beliefs and behavior may be encoded as SFPs when treatment decisions are not accounted for. Since patient outcomes are influenced by a myriad of clinical actions, many of which are not collected in data, this is common. Second, human-machine interaction may compound SFPs through a cycle of mutual reinforcement. Third, ML may introduce new SFPs stemming from incorrect predictions. Finally, historically correct clinical choices may become SFPs in the face of medical progress.ConclusionThere is a need for broad recognition of SFPs as ML is increasingly applied in resuscitation science and across medicine. Acknowledging this challenge is crucial to inform research and practice that can transform ML from a tool that risks obfuscating and compounding SFPs into one that sheds light on and mitigates SFPs.Copyright © 2022 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.