• Cochrane Db Syst Rev · Nov 2022

    Review

    Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis.

    • Sherie Smith and Nicola J Rowbotham.
    • Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK.
    • Cochrane Db Syst Rev. 2022 Nov 14; 11 (11): CD001021CD001021.

    BackgroundInhaled antibiotics are commonly used to treat persistent airway infection with Pseudomonas aeruginosa that contributes to lung damage in people with cystic fibrosis. Current guidelines recommend inhaled tobramycin for individuals with cystic fibrosis and persistent Pseudomonas aeruginosa infection who are aged six years or older. The aim is to reduce bacterial load in the lungs so as to reduce inflammation and deterioration of lung function. This is an update of a previously published review.ObjectivesTo evaluate the effects of long-term inhaled antibiotic therapy in people with cystic fibrosis on clinical outcomes (lung function, frequency of exacerbations and nutrition), quality of life and adverse events (including drug-sensitivity reactions and survival).Search MethodsWe searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials registries. Date of last search: 28 June 2022.Selection CriteriaWe selected trials where people with cystic fibrosis received inhaled anti-pseudomonal antibiotic treatment for at least three months, treatment allocation was randomised or quasi-randomised, and there was a control group (either placebo, no placebo or another inhaled antibiotic).Data Collection And AnalysisTwo authors independently selected trials, judged the risk of bias, extracted data from these trials and judged the certainty of the evidence using the GRADE system.Main ResultsThe searches identified 410 citations to 125 trials; 18 trials (3042 participants aged between five and 45 years) met the inclusion criteria. Limited data were available for meta-analyses due to the variability of trial design and reporting of results. A total of 11 trials (1130 participants) compared an inhaled antibiotic to placebo or usual treatment for a duration between three and 33 months. Five trials (1255 participants) compared different antibiotics, two trials (585 participants) compared different regimens of tobramycin and one trial (90 participants) compared intermittent tobramycin with continuous tobramycin alternating with aztreonam. One trial (18 participants) compared an antibiotic to placebo and also to a different antibiotic and so fell into both groups. The most commonly studied antibiotic was tobramycin which was studied in 12 trials. Inhaled antibiotics compared to placebo We found that inhaled antibiotics may improve lung function measured in a variety of ways (4 trials, 814 participants). Compared to placebo, inhaled antibiotics may also reduce the frequency of exacerbations (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.47 to 0.93; 3 trials, 946 participants; low-certainty evidence). Inhaled antibiotics may lead to fewer days off school or work (quality of life measure) (mean difference (MD) -5.30 days, 95% CI -8.59 to -2.01; 1 trial, 245 participants; low-certainty evidence). There were insufficient data for us to be able to report an effect on nutritional outcomes and there was no effect on survival. There was no effect on antibiotic resistance seen in the two trials that were included in meta-analyses. We are uncertain of the effect of the intervention on adverse events (very low-certainty evidence), but tinnitus and voice alteration were the only events occurring more often in the inhaled antibiotics group. The overall certainty of evidence was deemed to be low for most outcomes due to risk of bias within the trials and imprecision due to low event rates. Different antibiotics or regimens compared Of the eight trials comparing different inhaled antibiotics or different antibiotic regimens, there was only one trial for each unique comparison. We found no differences between groups for any outcomes except for the following. Aztreonam lysine for inhalation probably improved forced expiratory volume at one second (FEV1) % predicted compared to tobramycin (MD -3.40%, 95% CI -6.63 to -0.17; 1 trial, 273 participants; moderate-certainty evidence). However, the method of defining the endpoint was different to the remaining trials and the participants were exposed to tobramycin for a long period making interpretation of the results problematic. We found no differences in any measure of lung function in the remaining comparisons. Trials measured pulmonary exacerbations in different ways and showed no differences between groups except for aztreonam lysine probably leading to fewer people needing treatment with additional antibiotics than with tobramycin (RR 0.66, 95% CI 0.51 to 0.86; 1 trial, 273 participants; moderate-certainty evidence); and there were fewer hospitalisations due to respiratory exacerbations with levofloxacin compared to tobramycin (RR 0.62, 95% CI 0.40 to 0.98; 1 trial, 282 participants; high-certainty evidence). Important treatment-related adverse events were not very common across comparisons, but were reported less often in the tobramycin group compared to both aztreonam lysine and colistimethate. We found the certainty of evidence for these comparisons to be directly related to the risk of bias within the individual trials and varied from low to high.Authors' ConclusionsLong-term treatment with inhaled anti-pseudomonal antibiotics probably improves lung function and reduces exacerbation rates, but pooled estimates of the level of benefit were very limited. The best evidence available is for inhaled tobramycin. More evidence from trials measuring similar outcomes in the same way is needed to determine a better measure of benefit. Longer-term trials are needed to look at the effect of inhaled antibiotics on quality of life, survival and nutritional outcomes.Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…