• Journal of neurotrauma · Apr 2023

    Therapeutic role of microRNAs of small extracellular vesicles from human mesenchymal stromal/stem cells in the treatment of experimental traumatic brain injury.

    • Yanlu Zhang, Yi Zhang, Michael Chopp, Haiyan Pang, Liang Chen, Zheng Gang Zhang, Asim Mahmood, and Ye Xiong.
    • Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA.
    • J. Neurotrauma. 2023 Apr 1; 40 (7-8): 758771758-771.

    AbstractMesenchymal stem/stromal cells (MSC)-derived small extracellular vesicles (sEVs) possess therapeutic potential for treatment of traumatic brain injury (TBI). The essential role of micro ribonucleic acids (miRNAs) underlying the beneficial effects of MSC-derived sEVs for treatment of TBI remains elusive. The present study was designed to investigate the role of microRNAs in sEVs from MSCs with Argonaute 2 knockdown (Ago2-KD) in neurological recovery, neuroinflammation, and neurovascular remodeling in TBI rats. Therapeutic effects of sEVs derived from naïve MSCs (naïve-sEV), MSCs transfected with a vector carrying scramble control short hairpin RNA (shRNA; vector-sEV), and MSCs transfected with a lentiviral vector-based shRNA against Ago2 to knock down Ago2 (Ago2-KD-sEV) were determined in adult male rats subjected to a moderate TBI induced by controlled cortical impact (CCI). sEVs (naïve-sEV, vector-sEV, and Ago2-KD-sEV) or vehicle (phosphate-buffered solution [PBS]) were given intravenously 1 day post-injury (PI). Multiple neurological functional tests were performed weekly PI for 5 weeks. The Morris water maze (MWM) test was performed for spatial learning and memory 31-35 days PI. All animals were euthanized 5 weeks PI and the brains were collected for analyses of lesion volume, cell loss, neurovascular remodeling, and neuroinflammation. Ago2-KD reduced global sEV miRNA levels. Compared with the vehicle treatment, both naïve-sEV and vector-sEV treatments significantly improved functional recovery, reduced hippocampal neuronal cell loss, inhibited neuroinflammation, and promoted neurovascular remodeling (angiogenesis and neurogenesis). However, Ago2-KD-sEV treatment had a significantly less therapeutic effect on all the parameters measured above than did naïve-sEV and vector-sEV treatments. The therapeutic effects of Ago2-KD-sEV were comparable to that of vehicle treatment. Our findings demonstrate that attenuation of Ago2 protein in MSCs reduces miRNAs in MSC-derived sEVs and abolishes exosome treatment-induced beneficial effects in TBI recovery, suggesting that miRNAs in MSC-derived sEVs play an essential role in reducing neuronal cell loss, inhibiting neuroinflammation, and augmenting angiogenesis and neurogenesis, as well as improving functional recovery in TBI. The findings underscore the important role of miRNAs in MSC-derived sEVs in the treatment of TBI.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…