• Burns · Aug 2023

    Review

    Nerve growth factor and burn wound healing: Update of molecular interactions with skin cells.

    • Mahmoud G El Baassiri, Laura Dosh, Hanine Haidar, Alice Gerges, Silma Baassiri, Angelo Leone, Francesca Rappa, and Abdo Jurjus.
    • Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon; Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon. Electronic address: mge22@mail.aub.edu.
    • Burns. 2023 Aug 1; 49 (5): 9891002989-1002.

    AbstractBurn wound healing is a very intricate and complex process that conventionally includes three interrelated and overlapping stages of hemostasis/inflammation, proliferation and remodeling. This review aims to explore the molecular interactions of NGF with the most prominent cell types in the skin and their respective secretory products during wound healing, particularly burn wound healing. Different types of cells such as, nerve cells, endothelial cells, mast cells, macrophages, neutrophils, keratinocytes and fibroblasts all come into play through a plethora of cytokines and growth factors including nerve growth factor (NGF). NGF is a pleiotropic molecule that exerts its effects on all the aforementioned cells using two types of receptors (TrkA and p75) and affects wound healing by decreasing healing time and improving the quality of the scar. Both receptors mediate cellular proliferation, survival and apoptosis through complex signaling molecules. During the inflammatory phase, macrophages and mast cells secrete ample cytokines and growth factors, including NGF, which participate in the inflammatory reaction and induction of other cells targeting a homeostatic state. The proliferative phase follows, and NGF promotes angiogenesis through VEGF and FGF expression in endothelial cells. NGF also stimulates keratinocyte proliferation and neurite extension through the TrkA-PI3K/Akt pathway. Other molecules such as TGF-β1, IL-1β and TNF-α increase NGF expression in fibroblasts through dynamic interactions with Smads and MAPK molecules. Stimulated fibroblasts induce new collagen production to form the granulation tissue. In the remodeling phase, NGF regulates fibroblasts and induces their differentiation into myofibroblasts ultimately leading to wound contracture. In addition, NGF stimulates melanocytes and enhances hair growth and pigmentation. Such data depict the mechanisms of action of NGF implicated in the various stages of the healing process and support its applicability as a new targeted therapeutic molecule effective in burn wound healing but with some limitations.Copyright © 2022 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.