• Pain physician · Nov 2022

    Deep Learning Algorithm Trained on Lumbar Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Chronic Lumbosacral Radicular Pain.

    • Jeoung Kun Kim, Min Xing Wang, and Min Cheol Chang.
    • Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si, Republic of Korea.
    • Pain Physician. 2022 Nov 1; 25 (8): 587592587-592.

    BackgroundTransforaminal epidural steroid injections (TFESI) are widely used to alleviate lumbosacral radicular pain. Knowledge of the therapeutic outcomes of TFESI allows clinicians to elucidate therapeutic plans for managing lumbosacral radicular pain. Deep learning (DL) can outperform traditional machine learning techniques and learn from unstructured and perceptual data. A convolutional neural network (CNN) is a representative DL model.ObjectivesWe developed and investigated the accuracy of a CNN model for predicting therapeutic outcomes after TFESI for controlling chronic lumbosacral radicular pain using T2-weighted sagittal lumbar spine magnetic resonance (MR) images as input data.Study DesignImaging study using DL.SettingAt the spine center of a university hospital.MethodsWe collected whole T2-weighted sagittal lumbar spine MR images from 503 patients with chronic lumbosacral radicular pain due to a herniated lumbar disc (HLD) and spinal stenosis. A "good outcome" was defined as a >= 50% reduction in the numeric rating scale (NRS-11) score at 2 months after TFESI vs the pretreatment NRS-11 score. A "poor outcome" was defined as a < 50% decrease in the NRS-11 score at 2 months after TFESI vs pretreatment.ResultsIn the prediction of therapeutic outcomes after TFESI on the validation dataset, the area under the curve was 0.827.LimitationsOur study was limited in that we used a small amount of lumbar spine MR imaging data to train the CNN model.ConclusionsWe demonstrated that a CNN model trained, using whole lumbar spine sagittal T2-weighted MR images, could help determine outcomes after TFESI in patients with chronic lumbosacral radicular pain due to an HLD or spinal stenosis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.