• Neuromodulation · Jun 2023

    Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-timing Dependent Plasticity.

    • Julio C Hernandez-Pavon, Nils Schneider-Garces, John Patrick Begnoche, Lee E Miller, and Tommi Raij.
    • Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.
    • Neuromodulation. 2023 Jun 1; 26 (4): 745754745-754.

    ObjectiveThe ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP).Materials And MethodsEleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography.ResultsConsistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection.ConclusionThe results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.Copyright © 2022 International Neuromodulation Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…