-
- Chencai Wang, Jason J Kutch, Jennifer S Labus, Claire C Yang, Richard E Harris, Emeran A Mayer, and Benjamin M Ellingson.
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
- J Pain. 2023 Apr 1; 24 (4): 627642627-642.
AbstractMicrostructural alterations have been reported in patients with urologic chronic pelvic pain syndrome (UCPPS). However, it isn't clear whether these alterations are reproducible within 6 months or whether long-term symptom improvement is associated with specific microstructural changes. Using data from the MAPP-II Research Network, the current study performed population-based voxel-wise DTI and probabilistic tractography in a large sample of participants from the multicenter cohort with UCPPS (N = 364) and healthy controls (HCs, N = 61) over 36 months. While fractional anisotropy (FA) differences between UCPPS patients and HCs were observed to be unique at baseline and 6-month follow-up visits, consistent aberrations in mean diffusivity (MD) were observed between UCPPS and HCs at baseline and repeated at 6 months. Additionally, compared to HCs, UCPPS patients showed stronger structural connectivity (SC) between the left postcentral gyrus and the left precuneus, and weaker SC from the left cuneus to the left lateral occipital cortex and the isthmus of the left cingulate cortex at baseline and 6-month. By 36 months, reduced FA and MD aberrations in these same regions were associated with symptom improvement in UCPPS. Together, results suggest changes in white matter microstructure may play a role in the persistent pain symptoms in UCPPS. PERSPECTIVE: This longitudinal study identified reproducible, "disease-associated" patterns in altered mean diffusivity and abnormal microstructural connectivity in UCPPS comparing to HCs over 6 months. These differences were found in regions involved in sensory processing and integration and pain modulation, making it potentially amenable for clinical interventions that target synaptic and/or neuronal reorganization.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.