-
- Wei Wang, Junming Li, Yunning Liu, Pengpeng Ye, Chengdong Xu, Peng Yin, Jiangmei Liu, Jinlei Qi, Jinling You, Lin Lin, Ziwei Song, Limin Wang, Lijun Wang, Yong Huo, and Maigeng Zhou.
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
- Bmc Med. 2022 Nov 30; 20 (1): 467467.
BackgroundCardiovascular disease (CVD) is the leading cause of death in China. No previous study has reported CVD mortality at county-level, and little was known about the nonmedical ecological factors of CVD mortality at such small scale in mainland China. Understanding the spatiotemporal variations of CVD mortality and examining its nonmedical ecological factors would be of great importance to tailor local public health policies.MethodsBy using national mortality registration data in China, this study used hierarchical spatiotemporal Bayesian model to demonstrate spatiotemporal distribution of CVD mortality in 2844 counties during 2006 to 2020 and investigate how nonmedical ecological determinants have affected CVD mortality inequities from the spatial perspectives.ResultsDuring 2006-2020, the age-standardized mortality rate (ASMR) of CVD decreased from 284.77 per 100,000 in 2006 to 241.34 per 100,000 in 2020. Among 2844 counties, 1144 (40.22%) were hot spots counties with a higher CVD mortality risk compared to the national average and located mostly in northeast, north central, and westernmost regions; on the contrary, 1551 (54.53%) were cold spots counties and located mostly in south and southeast coastal counties. CVD mortality risk decreased from 2006 to 2020 was larger in counties where CVD mortality rate had been higher in 2006 in most of the counties, vice versa. Nationwide, nighttime light intensity (NTL) was the major influencing factor of CVD mortality, a higher NTL appeared to be negatively associated with a lower CVD mortality, with one unit increase in NTL, and the CVD mortality risk will decrease 11% (relative risk of NTL was estimated as 0.89 with 95% confidence interval of 0.83-0.94).ConclusionsSubstantial between-county discrepancies of CVD mortality distribution were observed during past 15 years in mainland China. Nonmedical ecological determinants were estimated to significantly explain the overall and local spatiotemporal patterns of this CVD mortality risk. Targeted considerations are needed to integrate primary care with clinical care through intensifying further strategies to narrow unequally distribution of CVD mortality at local scale. The approach to county-level analysis with small area models has the potential to provide novel insights into Chinese disease-specific mortality burden.© 2022. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.