• Journal of neurosurgery · Apr 2023

    Automated detection and analysis of subdural hematomas using a machine learning algorithm.

    • Marco Colasurdo, Nir Leibushor, Ariadna Robledo, Viren Vasandani, Zean Aaron Luna, Abhijit S Rao, Roberto Garcia, Visish M Srinivasan, Sunil A Sheth, Naama Avni, Moleen Madziva, Mor Berejick, Goni Sirota, Aielet Efrati, Avraham Meisel, Hashem Shaltoni, and Peter Kan.
    • 1Department of Radiology, Division of Neuroradiology, The University of Texas Medical Branch, Galveston, Texas.
    • J. Neurosurg. 2023 Apr 1; 138 (4): 107710841077-1084.

    ObjectiveMachine learning algorithms have shown groundbreaking results in neuroimaging. Herein, the authors evaluate the performance of a newly developed convolutional neural network (CNN) to detect and quantify the thickness, volume, and midline shift (MLS) of subdural hematoma (SDH) from noncontrast head CT (NCHCT).MethodsNCHCT studies performed for the evaluation of head trauma in consecutive patients between July 2018 and April 2021 at a single institution were retrospectively identified. Ground truth determination of SDH, thickness, and MLS was established by the neuroradiology report. The primary outcome was performance of the CNN in detecting SDH in an external validation set, as measured using area under the receiver operating characteristic curve analysis. Secondary outcomes included accuracy for thickness, volume, and MLS.ResultsAmong 263 cases with valid NCHCT according to the study criteria, 135 patients (51%) were male, the mean (± standard deviation) age was 61 ± 23 years, and 70 patients were diagnosed with SDH on neuroradiologist evaluation. The median SDH thickness was 11 mm (IQR 6 mm), and 16 patients had a median MLS of 5 mm (IQR 2.25 mm). In the independent data set, the CNN performed well, with sensitivity of 91.4% (95% CI 82.3%-96.8%), specificity of 96.4% (95% CI 92.7%-98.5%), and accuracy of 95.1% (95% CI 91.7%-97.3%); sensitivity for the subgroup with an SDH thickness above 10 mm was 100%. The maximum thickness mean absolute error was 2.75 mm (95% CI 2.14-3.37 mm), whereas the MLS mean absolute error was 0.93 mm (95% CI 0.55-1.31 mm). The Pearson correlation coefficient computed to determine agreement between automated and manual segmentation measurements was 0.97 (95% CI 0.96-0.98).ConclusionsThe described Viz.ai SDH CNN performed exceptionally well at identifying and quantifying key features of SDHs in an independent validation imaging data set.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.