• Resuscitation · Jan 2023

    The use of 100% compared to 50% oxygen during ineffective experimental cardiopulmonary resuscitation improves brain oxygenation.

    • Annika Nelskylä, Jaana Humaloja, Erik Litonius, Pirkka Pekkarinen, Giovanni Babini, Tomi P Mäki-Aho, Juho A Heinonen, and Markus B Skrifvars.
    • Department of Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
    • Resuscitation. 2023 Jan 1; 182: 109656109656.

    IntroductionPerfusion pressure and chest compression quality are generally considered key determinants of brain oxygenation during cardiopulmonary resuscitation (CPR) and the impact of oxygen administration is less clear. We compared ventilation with 100% and 50% oxygen during ineffective manual chest compressions and hypothesized that 100% oxygen would improve brain oxygenation.MethodsVentricular fibrillation (VF) was induced electrically in anaesthetized pigs and left untreated for 5 minutes, followed by randomization to ineffective manual CPR with ventilation of 50% or 100% oxygen. The first defibrillation was performed 10 minutes after induction of VF, and CPR continued with mechanical chest compressions (LUCAS2™) and defibrillation every 2 minutes until 36 minutes or return of spontaneous circulation (ROSC). Brain oxygenation was measured with near-infrared spectroscopy (rSO2) and invasive brain tissue oxygen (PbtO2) with a probe (NEUROVENT-PTO, RAUMEDIC) inserted into frontal brain tissue. Cerebral oxygenation was compared between groups with Mann-Whitney U tests and linear mixed models.ResultsTwenty-eight pigs were included in the study: 14 subjects in each group. During ineffective chest compressions relative PbtO2 was higher in the group ventilated with 100% compared to 50% oxygen (5.2 mmHg [1.4-20.5] vs 2.2 [0.8-6.8], p = 0.001), but there was no difference in rSO2 (22% [16-28] vs 18 [15-25], p = 0.090). The use of 50% or 100% oxygen showed no difference in relative PbtO2 (p = 1.00) and rSO2 (p = 0.206) during mechanical CPR.ConclusionsThe use of 100% compared to 50% oxygen during ineffective manual CPR improved brain oxygenation measured invasively in brain tissue, but there was no difference in rSO2.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.