• Chest · May 2023

    Emphysema quantifications with CT: Assessing the effects of acquisition protocols and imaging parameters using virtual imaging trials.

    • Ehsan Abadi, Giavanna Jadick, David A Lynch, SegarsW PaulWPCenter for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, Durham, NC; Medical Physics Graduate Program, Duke University, Durham, NC; Department of Biomedical , and Ehsan Samei.
    • Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, Durham, NC; Department of Electrical & Computer Engineering, Duke University, Durham, NC; Medical Physics Graduate Program, Duke University, Durham, NC. Electronic address: ehsan.abadi@duke.edu.
    • Chest. 2023 May 1; 163 (5): 108411001084-1100.

    BackgroundCT scan has notable potential to quantify the severity and progression of emphysema in patients. Such quantification should ideally reflect the true attributes and pathologic conditions of subjects, not scanner parameters. To achieve such an objective, the effects of the scanner conditions need to be understood so the influence can be mitigated.Research QuestionHow do CT scan imaging parameters affect the accuracy of emphysema-based quantifications and biomarkers?Study Design And MethodsTwenty anthropomorphic digital phantoms were developed with diverse anatomic attributes and emphysema abnormalities informed by a real COPD cohort. The phantoms were input to a validated CT scan simulator (DukeSim), modeling a commercial scanner (Siemens Flash). Virtual images were acquired under various clinical conditions of dose levels, tube current modulations (TCM), and reconstruction techniques and kernels. The images were analyzed to evaluate the effects of imaging parameters on the accuracy of density-based quantifications (percent of lung voxels with HU < -950 [LAA-950] and 15th percentile of lung histogram HU [Perc15]) across varied subjects. Paired t tests were performed to explore statistical differences between any two imaging conditions.ResultsThe most accurate imaging condition corresponded to the highest acquired dose (100 mAs) and iterative reconstruction (SAFIRE) with the smooth kernel of I31, where the measurement errors (difference between measurement and ground truth) were 35 ± 3 Hounsfield Units (HU), -4% ± 5%, and 26 ± 10 HU (average ± SD), for the mean lung HU, LAA-950, and Perc15, respectively. Without TCM and at the I31 kernel, increase of dose (20 to 100 mAs) improved the lung mean absolute error (MAE) by 4.2 ± 2.3 HU (average ± SD). TCM did not contribute to a systematic improvement of lung MAE.InterpretationThe results highlight that although CT scan quantification is possible, its reliability is impacted by the choice of imaging parameters. The developed virtual imaging trial platform in this study enables comprehensive evaluation of CT scan methods in reliable quantifications, an effort that cannot be readily made with patient images or simplistic physical phantoms.Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.