-
- Guillaume Bottaz-Bosson, Alphanie Midelet, Monique Mendelson, Jean-Christian Borel, Jean-Benoît Martinot, Ronan Le Hy, Marie-Caroline Schaeffer, Adeline Samson, Agnès Hamon, Renaud Tamisier, Atul Malhotra, Jean-Louis Pépin, and Sébastien Bailly.
- Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France.
- Chest. 2023 May 1; 163 (5): 127912911279-1291.
AbstractOver recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea.Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.